public void ExecuteRecipe(Plot plt) { // Create some linear but noisy data double[] ys = DataGen.NoisyLinear(null, pointCount: 100, noise: 30); double[] xs = DataGen.Consecutive(ys.Length); double x1 = xs[0]; double x2 = xs[xs.Length - 1]; // use the linear regression fitter to fit these data var model = new ScottPlot.Statistics.LinearRegressionLine(xs, ys); // plot the original data and add the regression line plt.Title($"Y = {model.slope:0.0000}x + {model.offset:0.0}\nRĀ² = {model.rSquared:0.0000}"); plt.AddScatter(xs, ys, lineWidth: 0); plt.AddLine(model.slope, model.offset, (x1, x2), lineWidth: 2); }