public void RecognizeImage() { var parasitizedPath = @"D:\Parasitized"; var unparasitizedPath = @"D:\Uninfected"; var converter = new PictureConverter(); var testParasitizedImagesInput = converter.Convert(@"D:\Users\Дмитри\Downloads\NeuralNetwork\NeuralNetworkTests\Images\Parasitized.png"); var testUnparasitizedImagesInput = converter.Convert(@"D:\Users\Дмитри\Downloads\NeuralNetwork\NeuralNetworkTests\Images\Unparasitized.png"); var topology = new Topology(testParasitizedImagesInput.Count, 1, 0.1, testParasitizedImagesInput.Count / 2); var neuralNetwork = new NeuralNetwork(topology); var size = 1000; //Обучение double[,] parasitizedInputs = GetData(parasitizedPath, converter, testParasitizedImagesInput, size); neuralNetwork.Learn(new double[] { 1 }, parasitizedInputs, 1); double[,] unparasitizedInputs = GetData(unparasitizedPath, converter, testParasitizedImagesInput, size); neuralNetwork.Learn(new double[] { 0 }, unparasitizedInputs, 1); var par = neuralNetwork.Predict(testParasitizedImagesInput.Select(t => (double)t).ToArray()); var unpar = neuralNetwork.Predict(testUnparasitizedImagesInput.Select(t => (double)t).ToArray()); Assert.AreEqual(1, Math.Round(par.Output, 2)); Assert.AreEqual(0, Math.Round(unpar.Output, 2)); }
public void RecognizeImages() { var size = 1000; var parasitizedPath = @"C:\Users\sshev\source\repos\neuralNetwork\NeuralNetworkTests\Images\Parasitized.png"; var unparasitizedPath = @"C:\Users\sshev\source\repos\neuralNetwork\NeuralNetworkTests\Images\Unparasitized.png"; var converter = new PictureConverter(); var testParasitizedImageInput = converter.Convert(@"C:\Users\sshev\source\repos\neuralNetwork\NeuralNetworkTests\Images\Parasitized.png"); var testUnparasitizedImageInput = converter.Convert(@"C:\Users\sshev\source\repos\neuralNetwork\NeuralNetworkTests\Images\Unparasitized.png"); var topology = new Topology(testParasitizedImageInput.Length, 1, 0.1, testParasitizedImageInput.Length / 2); var neuralNetwork = new NeuralNetwork(topology); double[,] parasitizedInputs = GetData(parasitizedPath, converter, testParasitizedImageInput, size); neuralNetwork.Learn(new double[] { 1 }, parasitizedInputs, 1); double[,] unparasitizedInputs = GetData(unparasitizedPath, converter, testParasitizedImageInput, size); neuralNetwork.Learn(new double[] { 0 }, unparasitizedInputs, 1); var par = neuralNetwork.Predict(testParasitizedImageInput.Select(t => (double)t).ToArray()); var unpar = neuralNetwork.Predict(testUnparasitizedImageInput.Select(t => (double)t).ToArray()); Assert.AreEqual(1, Math.Round(par.Output, 2)); Assert.AreEqual(0, Math.Round(unpar.Output, 2)); }
public void ConvertTest() { var converter = new PictureConverter(); var inputs = converter.Convert(@"C:\Users\admsh\source\repos\NeuralNetworks\NeuralNetworksTests\Images\Parasitized.png"); converter.Save("d:\\image.png", inputs); }
public void ConvertTest() { var converter = new PictureConverter(); var inputs = converter.Convert(@"C:\Users\konot\source\repos\NeuralNetworks\NeuralNetworksTests\images\Parasitized.png"); converter.Save("C:\\Users\\konot\\Downloads\\cell_images\\image.png", inputs); }
public void ConvertTest() { var converter = new PictureConverter(); var inputs = converter.Convert(@"D:\Users\Дмитри\Downloads\NeuralNetwork\NeuralNetworkTests\Images\Parasitized.png"); converter.Save("d:\\images.png", inputs); }
public void ConvertTest() { var converter = new PictureConverter(); var inputs = converter.Convert(@"C:\Users\Дима\source\repos\NeuralNetwork\NeuralNetworkTests2\image\clear.png"); converter.Save("d:\\image.png", inputs); }
public void ConvertTest() { var converter = new PictureConverter(); var inputs = converter.Convert(@"D:\Projects\neural network ii\NeuralNetworks\NeuralNetworkTests\Images\Parasitized.png"); converter.Save("D:\\Projects\\neural network ii\\Image test\\image.png", inputs); }
public void SaveAfterBrightness() { var pc = new PictureConverter(); var pixels = pc.Convert(@"Images\Parasitized.png"); pc.Save(@"C:\image.png", pc.Width, pc.Height, pixels); }
private void imageToolStripMenuItem_Click(object sender, EventArgs e) { if (openFileDialog1.ShowDialog() == DialogResult.OK) { var pictureConverter = new PictureConverter(); var inputs = pictureConverter.Convert(openFileDialog1.FileName); var result = Program.Controller.ImageNetwork.Predict(inputs).Output; } }
public void ConvertTest() { //Arrange var converter = new PictureConverter(); var inputs = converter.Convert(@"E:\Projects C#\Project1 - Lessons\FirstNeuralNetwork\NeuralNetworkClassesTests\Images\Parasitized.png"); converter.Save("E:\\image.png", inputs); //Act //Assert }
public void RecognizeImageTest() { //Arrange var size = 1000; var parasitizedPath = @"E:\Downloads_chrome\cell_images\Parasitized\"; var unparasitizedPath = @"E:\Downloads_chrome\cell_images\Uninfected\"; var converter = new PictureConverter(); var testparasitizedImageInput = converter.Convert(@"E:\Projects C#\Project1 - Lessons\FirstNeuralNetwork\NeuralNetworkClassesTests\Images\Parasitized.png"); var testunparasitizedImageInput = converter.Convert(@"E:\Projects C#\Project1 - Lessons\FirstNeuralNetwork\NeuralNetworkClassesTests\Images\Unparasitized.png"); var topology = new Topology(testparasitizedImageInput.Count, 1, 0.1, testparasitizedImageInput.Count / 2); var nuralNetwork = new NeuralNetWork(topology); double[,] parasitizedInputs = GetData(parasitizedPath, converter, testparasitizedImageInput, size); double[,] unparasitizedInputs = GetData(unparasitizedPath, converter, testunparasitizedImageInput, size); //Act nuralNetwork.Learn(new double[] { 1 }, parasitizedInputs, 2); nuralNetwork.Learn(new double[] { 0 }, unparasitizedInputs, 2); var par = nuralNetwork.FeedForward(testparasitizedImageInput.Select(t => (double)t).ToArray()); var unpar = nuralNetwork.FeedForward(testunparasitizedImageInput.Select(t => (double)t).ToArray()); //Assert Assert.AreEqual(1, Math.Round(par.Output, 2)); Assert.AreEqual(0, Math.Round(unpar.Output, 2)); }
private void imageToolStripMenuItem_Click(object sender, EventArgs e) { if (openFileDialog.ShowDialog() == DialogResult.OK) { var pictureConverter = new PictureConverter(); string path = openFileDialog.FileName; pictureBoxAfter.Image = new Bitmap(Image.FromFile(path), pictureBoxAfter.Width, pictureBoxAfter.Height); var inputs = pictureConverter.Convert(path); var result = _controller.ImageNetwork.Predict(inputs); var convertedBitmap = pictureConverter.ConvertToBitmap(pictureConverter.Width, pictureConverter.Height, inputs); pictureBoxBefore.Image = new Bitmap(convertedBitmap, pictureBoxBefore.Width, pictureBoxBefore.Height); messageLabel.Text = "Шанс заражения клетки малярией составляет: " + result.ToString("0.0%"); } }
private static double[,] GetData(string parasitizedPath, PictureConverter converter, double[] testImageInput, int size) { var images = Directory.GetFiles(parasitizedPath); var result = new double[size, testImageInput.Length]; for (int i = 0; i < size; i++) { var image = converter.Convert(images[i]); for (int j = 0; j < image.Length; j++) { result[i, j] = image[j]; } } return(result); }
public void RecogniseImages() { var size = 10; // Количество изображений в выборке для тестов var parasitizedPath = @"C:\Users\Roman\Desktop\datasets\malaria\Parasitized"; var uninfectedPath = @"C:\Users\Roman\Desktop\datasets\malaria\Uninfected"; var converter = new PictureConverter(); var testImageInput = converter.Convert(@"Images\Uninfected.png"); Topology topology = new Topology( inputCount: testImageInput.Length, outputCount: 1, learningRate: 0.1, hiddenLayersCount: new int[] { testImageInput.Length / 2 }); var neuralNetwork = new NeuralNetwork(topology); // Обучаем паразитированными изображениями double[,] parasitizedInputs = GetInputsData(parasitizedPath, converter, testImageInput, size); neuralNetwork.Learn(new double[] { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }, parasitizedInputs, 10); // Обучаем здоровыми изображениями double[,] uninfectedInputs = GetInputsData(uninfectedPath, converter, testImageInput, size); neuralNetwork.Learn(new double[] { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }, uninfectedInputs, 10); // Тестирование var testParasitizedInputs = converter.Convert(@"Images\Parasitized.png").Select(x => (double)x).ToArray(); double parasitizedOutput = neuralNetwork.Predict(testParasitizedInputs); var testUninfectedInputs = converter.Convert(@"Images\Uninfected.png").Select(x => (double)x).ToArray(); double uninfectedOutput = neuralNetwork.Predict(testUninfectedInputs); // Assert Assert.AreEqual(1, Math.Round(parasitizedOutput, 2)); Assert.AreEqual(0, Math.Round(uninfectedOutput, 2)); }
private static double[,] GetData(string parasitizedPath, PictureConverter converter, List <int> testImagesInput, int size) { var images = new double[size, testImagesInput.Count]; var result = Directory.GetFiles(parasitizedPath); for (int i = 0; i < size; i++) { var image = converter.Convert(result[i]); for (int j = 0; j < image.Count; j++) { images[i, j] = image[j]; } } return(images); }
private static int[,] GetData(string parasitizedPath, PictureConverter converter, List <int> testImageInput, int size) { var images = Directory.GetFiles(parasitizedPath); var result = new int[size, testImageInput.Count]; for (var i = 0; i < size; i++) { var image = converter.Convert(images[i]); for (var j = 0; j < image.Count; j++) { result[i, j] = image[j]; } } return(result); }