public void LoadModelFromFileNormal() { PCA p = new PCA(); p.Eigenvalues = new double[1] { 1 }; p.Save("modelTest.bin"); var pTest = PCA.LoadModelFromFile("modelTest.bin"); Assert.AreEqual(p.Eigenvalues, pTest.Eigenvalues); }
public static PCA GetPca(List <ImageWithResultModel> images) { if (File.Exists(Configuration.Get("PcaModelLocation"))) { Console.WriteLine("Loaded PCA from file.."); return(PCA.LoadModelFromFile(Configuration.Get("PcaModelLocation"))); } else { //train PCA: PCA pca = new PCA(); Console.WriteLine("Training PCA..."); pca.Train(images.Select(x => x.Image).ToList()); pca.Save(Configuration.Get("PcaModelLocation")); Console.WriteLine("Done training and saving PCA."); return(pca); } }
public void LoadModelFromFileException() { Assert.Throws <FileNotFoundException>(() => PCA.LoadModelFromFile("FileNotFound.bin")); }
private async Task PerformAnalysis(String path, Rectangle rectangle) { UShortArrayAsImage image = null; double[] pcaComponents = null; int tasksComplete = 0; UpdateStatus(path, startingImageStatusStr); List <Task> tasks = new List <Task>() { new Task(() => { var file = db.FileStorage.FindById($"images/{path}"); var ms = new MemoryStream(); file.CopyTo(ms); ms.Seek(0, 0); image = DicomFile.Open(ms).GetUshortImageInfo(); UpdateStatus(path, loadedImageStatusStr); }), new Task(() => { image = Normalization.GetNormalizedImage(image, rectangle, int.Parse(Configuration.Get("sizeImageToAnalyze"))); db.FileStorage.Upload($"images/{path}-cropped", $"{path}-cropped", image.GetPngAsMemoryStream()); UpdateStatus(path, croppedImageStatusStr); }), new Task(() => { image = Contrast.ApplyHistogramEqualization(image); db.FileStorage.Upload($"images/{path}-croppedContrast", $"{path}-croppedContrast", image.GetPngAsMemoryStream()); UpdateStatus(path, contrastImageStatusStr); }), new Task(() => { //PCA PCA pca = PCA.LoadModelFromFile(Configuration.Get("PcaModelLocation")); if (!int.TryParse(Configuration.Get("componentsToUse"), out int components)) { components = pca.Eigenvalues.Length; } pcaComponents = pca.GetComponentsFromImage(image, components); UpdateStatus(path, pcaImageStatusStr); }), new Task(() => { //SVM SVMProblem svmProblem = new SVMProblem(); // add all the components to an SVMNode[] SVMNode[] nodes = new SVMNode[pcaComponents.Length]; for (int i = 0; i < pcaComponents.Length; i++) { nodes[i] = new SVMNode(i + 1, pcaComponents[i]); } svmProblem.Add(nodes, 0); svmProblem = svmProblem.Normalize(SVMNormType.L2); SVMModel svmModel = SVM.LoadModel(Configuration.Get("ModelLocation")); double[] results = svmProblem.PredictProbability(svmModel, out var probabilities); var analysis = db.GetCollection <Analysis>("analysis"); Analysis currentAnalysis = analysis.FindOne(x => x.Id.ToString().Equals(path)); currentAnalysis.Certainty = results[0] == 0 ? probabilities[0][1] * 100 : probabilities[0][0] * 100; currentAnalysis.Diagnosis = results[0] == 0 ? DdsmImage.Pathologies.Benign : DdsmImage.Pathologies .Malignant; analysis.Update(currentAnalysis); UpdateStatus(path, svmImageStatusStr); }) }; foreach (Task task in tasks) { task.Start(); await task; // lets set percentage done: var analysis = db.GetCollection <Analysis>("analysis"); Analysis currentAnalysis = analysis.FindOne(x => x.Id.ToString().Equals(path)); currentAnalysis.PercentageDone = (++tasksComplete * 100) / tasks.Count; analysis.Update(currentAnalysis); } UpdateStatus(path, doneStatusStr); }