/// <summary> /// Solve the matrix equation M X = B, returning X. /// </summary> /// <param name="B"></param> /// <returns></returns> public MatrixFixed Solve(MatrixFixed B) { MatrixFixed x; // solution matrix if (U_.Rows < U_.Columns) { // augment y with extra rows of MatrixFixed yy = new MatrixFixed(U_.Rows, B.Columns); // zeros, so that it matches yy.Fill(0); yy.Update(B); // cols of u.transpose. ??? x = U_.ConjugateTranspose() * yy; } else { x = U_.ConjugateTranspose() * B; } int i, j; for (i = 0; i < x.Rows; i++) { // multiply with diagonal 1/W float weight = W_[i, i]; if (weight != 0) //vnl_numeric_traits<T>::zero) { weight = 1.0f / weight; } for (j = 0; j < x.Columns; j++) { x[i, j] *= weight; } } x = V_ * x; // premultiply with v. return(x); }
/// <summary> /// Simple overall prediction /// </summary> /// <param name="scene"></param> /// <param name="u"></param> /// <param name="delta_t"></param> public void predict_filter_slow(Scene_Single scene, Vector u, float delta_t) { Debug.WriteLine("*** SLOW PREDICTION ***"); // What we need to do for the prediction: // Calculate f and grad_f_x // Calculate Q // Form x(k+1|k) and P(k+1|k) int size = (int)scene.get_total_state_size(); // First form original total state and covariance Vector x = new Vector(size); MatrixFixed P = new MatrixFixed(size, size); scene.construct_total_state_and_covariance(ref x, ref P); // Make model calculations: store results in RES matrices Vector xv = scene.get_xv(); //Vector xv = new Vector(scene.get_xv()); scene.get_motion_model().func_fv_and_dfv_by_dxv(xv, u, delta_t); scene.get_motion_model().func_Q(scene.get_xv(), u, delta_t); // Find new state f Vector f = new Vector(size); // Feature elements of f are the same as x f.Update(x); f.Update(scene.get_motion_model().get_fvRES(), 0); // Find new P // Since most elements of df_by_dx are zero... MatrixFixed df_by_dx = new MatrixFixed(size, size); df_by_dx.Fill(0.0f); // Fill the rest of the elements of df_by_dx: 1 on diagonal for features for (int i = (int)scene.get_motion_model().STATE_SIZE; i < df_by_dx.Rows; i++) { df_by_dx[i, i] = 1.0f; } df_by_dx.Update(scene.get_motion_model().get_dfv_by_dxvRES(), 0, 0); // Calculate the process noise MatrixFixed Q = new MatrixFixed(size, size); Q.Fill(0.0f); Q.Update(scene.get_motion_model().get_QxRES(), 0, 0); P.Update(df_by_dx * P * df_by_dx.Transpose()); P += Q; scene.fill_state_and_covariance(f, P); }
/// <summary> /// Constructor for known features. The different number of /// arguments differentiates it from the constructor for partially-initialised /// features /// </summary> /// <param name="id">reference to the feature identifier</param> /// <param name="?"></param> public Feature(byte[] id, uint lab, uint list_pos, Scene_Single scene, Vector y_known, Vector xp_o, Feature_Measurement_Model f_m_m, uint k_f_l) { feature_measurement_model = f_m_m; feature_constructor_bookeeping(); identifier = id; label = lab; position_in_list = list_pos; // Position of new feature in list // Save the vehicle position where this feature was acquired xp_orig = new Vector(xp_o); // Straighforward initialisation of state and covariances y = y_known; Pxy = new MatrixFixed(scene.get_motion_model().STATE_SIZE, feature_measurement_model.FEATURE_STATE_SIZE); Pxy.Fill(0.0f); Pyy = new MatrixFixed(feature_measurement_model.FEATURE_STATE_SIZE, feature_measurement_model.FEATURE_STATE_SIZE); Pyy.Fill(0.0f); int i = 0; MatrixFixed newPyjyi_to_store; foreach (Feature it in scene.get_feature_list_noconst()) { if (i < position_in_list) { newPyjyi_to_store = new MatrixFixed( it.get_feature_measurement_model().FEATURE_STATE_SIZE, feature_measurement_model.FEATURE_STATE_SIZE); //add to the list matrix_block_list.Add(newPyjyi_to_store); } i++; } known_feature_label = (int)k_f_l; if (feature_measurement_model.fully_initialised_flag) { partially_initialised_feature_measurement_model = null; fully_initialised_feature_measurement_model = (Fully_Initialised_Feature_Measurement_Model)feature_measurement_model; } else { fully_initialised_feature_measurement_model = null; partially_initialised_feature_measurement_model = (Partially_Initialised_Feature_Measurement_Model)feature_measurement_model; } }
/// <summary> /// Calculate inverse of transpose. /// </summary> /// <returns></returns> public MatrixFixed TransposeInverse() { MatrixFixed Winverse = new MatrixFixed(Winverse_.Rows, Winverse_.Columns); Winverse.Fill(0); for (int i = 0; i < rank_; i++) { Winverse[i, i] = Winverse_[i, i]; } return(U_ * Winverse * V_.ConjugateTranspose()); }
/// <summary> /// Calculate pseudo-inverse. /// </summary> /// <param name="rank"></param> /// <returns></returns> public MatrixFixed PseudoInverse(int rank) { MatrixFixed Winverse = new MatrixFixed(Winverse_.Rows, Winverse_.Columns); Winverse.Fill(0); for (int i = 0; i < rank; i++) { Winverse[i, i] = Winverse_[i, i]; } return(V_ * Winverse * U_.ConjugateTranspose()); }
/// <summary> /// Recompose SVD to U*W*V'. /// </summary> /// <returns></returns> public MatrixFixed Recompose() { MatrixFixed W = new MatrixFixed(W_.Rows, W_.Columns); W.Fill(0); for (int i = 0; i < rank_; i++) { W[i, i] = W_[i, i]; } return(U_ * W * V_.ConjugateTranspose()); }
/// <summary> /// Calculate the mean and covariance of \lambda over all the particles, /// i.e. /// /// \text{mean} &= \mu = \sum_i \lambda_i p(i) \nonumber \\ /// \text{mean} &= \sum_i \lambda_i\lambda_i^T p(i) - \mu\mu^T \nonumber /// /// The result is not returned, but is instead stored in the class to be read using /// get_mean() and get_covariance(). /// </summary> public void calculate_mean_and_covariance() { // Vector which will store expected value of lambda * lambda^T // (allows us to do this calculation with one pass through particles) MatrixFixed ExpectedSquared = new MatrixFixed(PARTICLE_DIMENSION, PARTICLE_DIMENSION); ExpectedSquared.Fill(0.0f); // Zero mean vector before filling it up mean.Fill(0.0f); foreach (Particle it in particle_vector) { mean += it.lambda * it.probability; ExpectedSquared += it.probability * Vector.OuterProduct(it.lambda, it.lambda); } covariance = ExpectedSquared - Vector.OuterProduct(mean, mean); }
public void construct_total_internal_measurement_stuff( Vector nu_tot, MatrixFixed dh_by_dx_tot, MatrixFixed R_tot, uint total_state_size) { //uint size = internal_measurement_model.MEASUREMENT_SIZE; //assert (nu_tot.Size() == size && //dh_by_dx_tot.Rows() == size && //dh_by_dx_tot.Cols() == total_state_size && //R_tot.Rows() == size && R_tot.Cols() == size); //assert(successful_internal_measurement_flag); nu_tot.Fill(0.0f); dh_by_dx_tot.Fill(0.0f); R_tot.Fill(0.0f); nu_tot.Update(nuv, 0); dh_by_dx_tot.Update(dhv_by_dxv, 0, 0); R_tot.Update(Rv, 0, 0); }
/// <summary> /// Fill noise covariance matrix Pnn: this is the covariance of /// the noise vector (V) /// (Omega) /// that gets added to the state. /// Form of this could change later, but for now assume that /// V and Omega are independent, and that each of their components is /// independent... /// </summary> /// <param name="xv"></param> /// <param name="v"></param> /// <param name="delta_t"></param> public override void func_Q(Vector xv, Vector v, float delta_t) { float linear_velocity_noise_variance = SD_A_component_filter * SD_A_component_filter * delta_t * delta_t; float angular_velocity_noise_variance = SD_alpha_component_filter * SD_alpha_component_filter * delta_t * delta_t; // Independence means that the matrix is diagonal MatrixFixed Pnn = new MatrixFixed(6, 6); Pnn.Fill(0.0f); Pnn.Put(0, 0, linear_velocity_noise_variance); Pnn.Put(1, 1, linear_velocity_noise_variance); Pnn.Put(2, 2, linear_velocity_noise_variance); Pnn.Put(3, 3, angular_velocity_noise_variance); Pnn.Put(4, 4, angular_velocity_noise_variance); Pnn.Put(5, 5, angular_velocity_noise_variance); // Form Jacobian dxnew_by_dn // Is like this: // I * delta_t 0 // 0 dqnew_by_dOmega // I 0 // 0 I // Start by zeroing MatrixFixed dxnew_by_dn = new MatrixFixed(13, 6); dxnew_by_dn.Fill(0.0f); // Fill in easy bits first MatrixFixed Temp33A = new MatrixFixed(3, 3); Temp33A.SetIdentity(); dxnew_by_dn.Update(Temp33A, 7, 0); dxnew_by_dn.Update(Temp33A, 10, 3); Temp33A *= delta_t; dxnew_by_dn.Update(Temp33A, 0, 0); // Tricky bit is dqnew_by_dOmega // Is actually the same calculation as in func_fv... // Since omega and Omega are additive...? Vector3D rold = new Vector3D(0, 0, 0); Vector3D vold = new Vector3D(0, 0, 0); Vector3D omegaold = new Vector3D(0, 0, 0); Quaternion qold = new Quaternion(); extract_r_q_v_omega(xv, rold, qold, vold, omegaold); // overkill but easy // Fill in dqnew_by_domega = d(q x qwt)_by_dqwt . dqwt_by_domega // Temp44A is d(q x qwt) by dqwt MatrixFixed Temp44A = MatrixFixed.dq3_by_dq1(qold); // Use function below for dqwt_by_domega MatrixFixed Temp43A = new MatrixFixed(4, 3); dqomegadt_by_domega(omegaold, delta_t, Temp43A); // Multiply them together MatrixFixed Temp43B = Temp44A * Temp43A; // And then plug into Jacobian dxnew_by_dn.Update(Temp43B, 3, 3); // Finally do Q = dxnew_by_dn . Pnn . dxnew_by_dnT QxRES.Update(dxnew_by_dn * Pnn * dxnew_by_dn.Transpose()); // cout << "QxRES" << QxRES; }
/// <summary> /// Form the covariance matrix Q of the process noise associated with x_v . /// </summary> /// <param name="xv"></param> /// <param name="v"></param> /// <param name="delta_t"></param> public override void func_Q(Vector xv, Vector v, float delta_t) { // Fill noise covariance matrix Pnn: this is the covariance of // the noise vector (V) // (Omega) // that gets added to the state. // Form of this could change later, but for now assume that // V and Omega are independent, and that each of their components is // independent... float linear_velocity_noise_variance = SD_A_component_filter * SD_A_component_filter * delta_t * delta_t; float angular_velocity_noise_variance = SD_alpha_component_filter * SD_alpha_component_filter * delta_t * delta_t; // Independence means that the matrix is diagonal MatrixFixed Pnn = new MatrixFixed(6, 6); Pnn.Fill(0.0f); Pnn.Put(0, 0, linear_velocity_noise_variance); Pnn.Put(1, 1, linear_velocity_noise_variance); Pnn.Put(2, 2, linear_velocity_noise_variance); Pnn.Put(3, 3, angular_velocity_noise_variance); Pnn.Put(4, 4, angular_velocity_noise_variance); Pnn.Put(5, 5, angular_velocity_noise_variance); // Form Jacobian dxnew_by_dn // Is like this: // I * delta_t 0 // 0 dqnew_by_dOmega // Start by zeroing MatrixFixed dxnew_by_dn = new MatrixFixed(7, 6); dxnew_by_dn.Fill(0.0f); // The translation part is just I \Delta t MatrixFixed Temp33A = new MatrixFixed(3, 3); Temp33A.SetIdentity(); Temp33A *= delta_t; dxnew_by_dn.Update(Temp33A, 0, 0); // qnew = q x \Omega \Deltat // dqnew_by_d\Omega = dqnew_by_d\Omega\Delta t . d\Omega\Delta t_by_d\Omega // Get the first part Vector qRXYZ = xv.Extract(4, 3); Quaternion qold = new Quaternion(); qold.SetRXYZ(qRXYZ); MatrixFixed Temp44A = MatrixFixed.dq3_by_dq1(qold); // Use function below for dqwt_by_dOmega Vector Omega = new Vector(3); Omega.Fill(SD_alpha_component_filter); MatrixFixed Temp43A = new MatrixFixed(4, 3); dqomegadt_by_domega(new Vector3D(Omega), delta_t, Temp43A); // Multiply them together MatrixFixed Temp43B = Temp44A * Temp43A; // And then plug into Jacobian dxnew_by_dn.Update(Temp43B, 3, 3); // Finally do Q = dxnew_by_dn . Pnn . dxnew_by_dnT QxRES.Update(dxnew_by_dn * Pnn * dxnew_by_dn.Transpose()); }