Example #1
0
        public static bool[] AccordDecide(LogisticRegression lrModel, IDataView input, double threshold)
        {
            var convertedInput = IDataViewToAccord(input).inputs;
            var lrProbability  = lrModel.Probabilities(convertedInput);

            bool[] output = new bool[lrProbability.Length];
            for (int i = 0; i < lrProbability.Length; i++)
            {
                output[i] = lrProbability[i][1] >= threshold;
            }
            return(output);
        }
Example #2
0
        private static List <ROCDataPoint> ROCCurve(LogisticRegression accordModel, IDataView data)
        {
            var convertedInput = IDataViewToAccord(data).inputs;
            var lrProbability  = accordModel.Probabilities(convertedInput);

            double[] probabilities = new double[lrProbability.Length];
            for (int i = 0; i < probabilities.Length; i++)
            {
                probabilities[i] = lrProbability[i][1];
            }

            double[] correctLabels = IDataViewToAccord(data).labels;
            return(ROCCurve(correctLabels, probabilities));
        }
Example #3
0
        private static void ShowAccordIntermediateData(IDataView input, LogisticRegression accordModel)
        {
            var convertedInput = IDataViewToAccord(input).inputs;

            bool[] lrOutput        = accordModel.Decide(convertedInput);
            var    lrScore         = accordModel.Scores(convertedInput);
            var    lrProbability   = accordModel.Probabilities(convertedInput);
            var    inputEnumerable = mlContext.Data.CreateEnumerable <IDataViewWrapper>(input, true);

            sw.WriteLine("Label\tScore\tProbability\tPrediction");
            int count = 0;

            foreach (IDataViewWrapper pp in inputEnumerable)
            {
                int    label       = pp.Label ? 1 : 0;
                int    prediction  = lrOutput[count] ? 1 : 0;
                double score       = lrScore[count][1];
                double probability = lrProbability[count][1];
                sw.WriteLine("{0}\t{1}\t{2}\t{3}", label, score, probability, prediction);
                count++;
            }
            sw.Flush();
        }