public static void remove_small_components(Intarray segmentation, int w = 5, int h = 4) { if (NarrayUtil.Max(segmentation) > 100000) { throw new Exception("remove_small_components: to many segments"); } Narray <Rect> bboxes = new Narray <Rect>(); ImgLabels.bounding_boxes(ref bboxes, segmentation); for (int i = 1; i < bboxes.Length(); i++) { Rect b = bboxes[i]; if (b.Width() < w && b.Height() < h) { for (int x = b.x0; x < b.x1; x++) { for (int y = b.y0; y < b.y1; y++) { if (segmentation[x, y] == i) { segmentation[x, y] = 0; } } } } } }
public static void check_approximately_sorted(Intarray labels) { for (int i = 0; i < labels.Length1d(); i++) { if (labels.At1d(i) > 100000) { throw new Exception("labels out of range"); } } Narray <Rect> rboxes = new Narray <Rect>(); ImgLabels.bounding_boxes(ref rboxes, labels); #if false // TODO/tmb disabling check until the overseg issue is fixed --tmb for (int i = 1; i < rboxes.Length(); i++) { if (rboxes[i].Right < rboxes[i - 1].Left) { /*errors_log("bad segmentation", labels); * errors_log.recolor("bad segmentation (recolored)", labels); * throw_fmt("boxes aren't approximately sorted: " * "box %d is to the left from box %d", i, i-1);*/ } } #endif }
public override void Charseg(ref Intarray outimage, Bytearray inarray) { Bytearray image = new Bytearray(); image.Copy(inarray); OcrRoutine.binarize_simple(image); OcrRoutine.Invert(image); outimage.Copy(image); Intarray labels = new Intarray(); labels.Copy(image); ImgLabels.label_components(ref labels); Narray <Rect> boxes = new Narray <Rect>(); ImgLabels.bounding_boxes(ref boxes, labels); Intarray equiv = new Intarray(boxes.Length()); for (int i = 0; i < boxes.Length(); i++) { equiv[i] = i; } for (int i = 1; i < boxes.Length(); i++) { Rect p = boxes[i]; for (int j = 1; j < boxes.Length(); j++) { if (i == j) { continue; } Rect q = boxes[j]; int x0 = Math.Max(p.x0, q.x0); int x1 = Math.Min(p.x1, q.x1); int iw = x1 - x0; if (iw <= 0) { continue; // no overlap } int ow = Math.Min(p.Width(), q.Width()); float frac = iw / (float)(ow); if (frac < 0.5f) { continue; // insufficient overlap } // printf("%d %d : %d %d : %g\n",i,j,iw,ow,frac); equiv.Put1d(Math.Max(i, j), Math.Min(i, j)); } } for (int i = 0; i < labels.Length(); i++) { labels.Put1d(i, equiv.At1d(labels.At1d(i))); } ImgLabels.renumber_labels(labels, 1); outimage.Move(labels); SegmRoutine.make_line_segmentation_white(outimage); SegmRoutine.check_line_segmentation(outimage); }
public static void line_segmentation_sort_x(Intarray segmentation) { if (NarrayUtil.Max(segmentation) > 100000) { throw new Exception("line_segmentation_merge_small_components: to many segments"); } Narray <Rect> bboxes = new Narray <Rect>(); ImgLabels.bounding_boxes(ref bboxes, segmentation); Floatarray x0s = new Floatarray(); unchecked { x0s.Push((float)-999999); } for (int i = 1; i < bboxes.Length(); i++) { if (bboxes[i].Empty()) { x0s.Push(999999); } else { x0s.Push(bboxes[i].x0); } } // dprint(x0s,1000); printf("\n"); Narray <int> permutation = new Intarray(); Narray <int> rpermutation = new Intarray(); NarrayUtil.Quicksort(permutation, x0s); rpermutation.Resize(permutation.Length()); for (int i = 0; i < permutation.Length(); i++) { rpermutation[permutation[i]] = i; } // dprint(rpermutation,1000); printf("\n"); for (int i = 0; i < segmentation.Length1d(); i++) { if (segmentation.At1d(i) == 0) { continue; } segmentation.Put1d(i, rpermutation[segmentation.At1d(i)]); } }
public static Bitmap ConvertCharsegToBitmapRecolor(Intarray charseg, string trans = "") { Intarray cseg = new Intarray(); cseg.Copy(charseg); Narray <Rect> bboxes = new Narray <Rect>(); //SegmRoutine.make_line_segmentation_black(cseg); ImgLabels.bounding_boxes(ref bboxes, cseg); SegmRoutine.make_line_segmentation_white(cseg); ImgLabels.simple_recolor(cseg); return(DrawSegmentTranscript( DrawSegmentNumbers( ImgRoutine.NarrayToRgbBitmap(cseg), bboxes), bboxes, trans)); }
public void EstimateSpaceSize() { Intarray labels = new Intarray(); labels.Copy(segmentation); ImgLabels.label_components(ref labels); Narray <Rect> boxes = new Narray <Rect>(); ImgLabels.bounding_boxes(ref boxes, labels); Floatarray distances = new Floatarray(); distances.Resize(boxes.Length()); distances.Fill(99999f); for (int i = 1; i < boxes.Length(); i++) { Rect b = boxes[i]; for (int j = 1; j < boxes.Length(); j++) { Rect n = boxes[j]; int delta = n.x0 - b.x1; if (delta < 0) { continue; } if (delta >= distances[i]) { continue; } distances[i] = delta; } } float interchar = NarrayUtil.Fractile(distances, PGetf("space_fractile")); space_threshold = interchar * PGetf("space_multiplier"); // impose some reasonable upper and lower bounds float xheight = 10.0f; // FIXME space_threshold = Math.Max(space_threshold, PGetf("space_min") * xheight); space_threshold = Math.Min(space_threshold, PGetf("space_max") * xheight); }
public static void remove_small_components <T>(Narray <T> bimage, int mw, int mh) { Intarray image = new Intarray(); image.Copy(bimage); ImgLabels.label_components(ref image); Narray <Rect> rects = new Narray <Rect>(); ImgLabels.bounding_boxes(ref rects, image); Bytearray good = new Bytearray(rects.Length()); for (int i = 0; i < good.Length(); i++) { good[i] = 1; } for (int i = 0; i < rects.Length(); i++) { if (rects[i].Width() < mw && rects[i].Height() < mh) { // printf("*** %d %d %d\n",i,rects[i].width(),rects[i].height()); good[i] = 0; } } for (int i = 0; i < image.Length1d(); i++) { if (good[image.At1d(i)] == 0) { image.Put1d(i, 0); } } for (int i = 0; i < image.Length1d(); i++) { if (image.At1d(i) == 0) { bimage.Put1d(i, default(T)); // default(T) - 0 } } }
/// <summary> /// Compute the groups for a segmentation (internal method). /// </summary> private void computeGroups() { rboxes.Clear(); ImgLabels.bounding_boxes(ref rboxes, labels); int n = rboxes.Length(); // NB: we start with i=1 because i=0 is the background for (int i = 1; i < n; i++) { for (int range = 1; range <= maxrange; range++) { if (i + range > n) { continue; } Rect box = rboxes.At1d(i); Intarray seg = new Intarray(); bool bad = false; for (int j = i; j < i + range; j++) { if (j > i && rboxes.At1d(j).x0 - rboxes.At1d(j - 1).x1 > maxdist) { bad = true; break; } box.Include(rboxes.At1d(j)); seg.Push(j); } if (bad) { continue; } boxes.Push(box); segments.Push(seg); } } }
protected void rescale(Floatarray v, Floatarray input) { if (input.Rank() != 2) { throw new Exception("CHECK_ARG: sub.Rank()==2"); } Floatarray sub = new Floatarray(); // find the largest connected component // and crop to its bounding box // (use a binary version of the character // to compute the bounding box) Intarray components = new Intarray(); float threshold = PGetf("threshold") * NarrayUtil.Max(input); Global.Debugf("biggestcc", "threshold {0}", threshold); components.MakeLike(input); components.Fill(0); for (int i = 0; i < components.Length(); i++) { components[i] = (input[i] > threshold ? 1 : 0); } int n = ImgLabels.label_components(ref components); Intarray totals = new Intarray(n + 1); totals.Fill(0); for (int i = 0; i < components.Length(); i++) { totals[components[i]]++; } totals[0] = 0; Narray <Rect> boxes = new Narray <Rect>(); ImgLabels.bounding_boxes(ref boxes, components); int biggest = NarrayUtil.ArgMax(totals); Rect r = boxes[biggest]; int pad = (int)(PGetf("pad") + 0.5f); r.PadBy(pad, pad); Global.Debugf("biggestcc", "({0}) {1}[{2}] :: {3} {4} {5} {6}", n, biggest, totals[biggest], r.x0, r.y0, r.x1, r.y1); // now perform normal feature extraction // (use the original grayscale input) sub = input; ImgMisc.Crop(sub, r); int csize = PGeti("csize"); float s = Math.Max(sub.Dim(0), sub.Dim(1)) / (float)csize; if (PGetf("noupscale") > 0 && s < 1.0f) { s = 1.0f; } float sig = s * PGetf("aa"); float dx = (csize * s - sub.Dim(0)) / 2f; float dy = (csize * s - sub.Dim(1)) / 2f; if (sig > 1e-3f) { Gauss.Gauss2d(sub, sig, sig); } v.Resize(csize, csize); v.Fill(0f); for (int i = 0; i < csize; i++) { for (int j = 0; j < csize; j++) { float x = i * s - dx; float y = j * s - dy; if (x < 0 || x >= sub.Dim(0)) { continue; } if (y < 0 || y >= sub.Dim(1)) { continue; } float value = ImgOps.bilin(sub, x, y); v[i, j] = value; } } /*Global.Debugf("biggestcc", "{0} {1} ({2}) -> {3} {4} ({5})", * sub.Dim(0), sub.Dim(1), NarrayUtil.Max(sub), * v.Dim(0), v.Dim(1), NarrayUtil.Max(v));*/ }
public List <List <float> > SpaceCosts(List <Candidate> candidates, Bytearray image) { /* * Given a list of character recognition candidates and their * classifications, and an image of the corresponding text line, * compute a list of pairs of costs for putting/not putting a space * after each of the candidate characters. * * The basic idea behind this simple algorithm is to try larger * and larger horizontal closing operations until most of the components * start having a "wide" aspect ratio; that's when characters have merged * into words. The remaining whitespace should be spaces. * * This is just a simple stopgap measure; it will be replaced with * trainable space modeling. */ int w = image.Dim(0); int h = image.Dim(1); Bytearray closed = new Bytearray(); int r; for (r = 0; r < maxrange; r++) { if (r > 0) { closed.Copy(image); Morph.binary_close_circle(closed, r); } else { closed.Copy(image); } Intarray labeled = new Intarray(); labeled.Copy(closed); ImgLabels.label_components(ref labeled); Narray <Rect> rects = new Narray <Rect>(); ImgLabels.bounding_boxes(ref rects, labeled); Floatarray aspects = new Floatarray(); for (int i = 0; i < rects.Length(); i++) { Rect rect = rects[i]; float aspect = rect.Aspect(); aspects.Push(aspect); } float maspect = NarrayUtil.Median(aspects); if (maspect >= this.aspect_threshold) { break; } } // close with a little bit of extra space closed.Copy(image); Morph.binary_close_circle(closed, r + 1); // compute the remaining aps //Morph.binary_dilate_circle(); // every character box that ends near a cap gets a space appended return(null); }
public static void line_segmentation_merge_small_components(ref Intarray segmentation, int r = 10) { if (NarrayUtil.Max(segmentation) > 100000) { throw new Exception("line_segmentation_merge_small_components: to many segments"); } make_line_segmentation_black(segmentation); Narray <Rect> bboxes = new Narray <Rect>(); ImgLabels.bounding_boxes(ref bboxes, segmentation); bboxes[0] = Rect.CreateEmpty(); bool changed; do { changed = false; for (int i = 1; i < bboxes.Length(); i++) { Rect b = bboxes[i]; if (b.Empty()) { continue; } if (b.Width() >= r || b.Height() >= r) { continue; } // merge small components only with touching components int closest = 0; Rect b1 = b.Grow(1); b1.Intersect(new Rect(0, 0, segmentation.Dim(0), segmentation.Dim(1))); for (int x = b1.x0; x < b1.x1; x++) { for (int y = b1.y0; y < b1.y1; y++) { int value = segmentation[x, y]; if (value == 0) { continue; } if (value == i) { continue; } closest = value; break; } } if (closest == 0) { continue; } for (int x = b.x0; x < b.x1; x++) { for (int y = b.y0; y < b.y1; y++) { if (segmentation[x, y] == i) { segmentation[x, y] = closest; } } } bboxes[i] = Rect.CreateEmpty(); changed = true; } } while (changed); }
public static void fix_diacritics(Intarray segmentation) { Narray <Rect> bboxes = new Narray <Rect>(); ImgLabels.bounding_boxes(ref bboxes, segmentation); if (bboxes.Length() < 1) { return; } Intarray assignments = new Intarray(bboxes.Length()); for (int i = 0; i < assignments.Length(); i++) { assignments[i] = i; } for (int j = 0; j < bboxes.Length(); j++) { float dist = 1e38f; int closest = -1; for (int i = 0; i < bboxes.Length(); i++) { // j should overlap i in the x direction if (bboxes.At1d(j).x1 < bboxes.At1d(i).x0) { continue; } if (bboxes.At1d(j).x0 > bboxes.At1d(i).x1) { continue; } // j should be above i if (!(bboxes.At1d(j).y0 >= bboxes.At1d(i).y1)) { continue; } #if false // j should be smaller than i if (!(bboxes.At1d(j).area() < bboxes.At1d(i).area())) { continue; } #endif float d = Math.Abs((bboxes[j].x0 + bboxes[j].x1) / 2 - (bboxes[i].x0 + bboxes[i].x1) / 2); if (d >= dist) { continue; } dist = d; closest = i; } if (closest < 0) { continue; } assignments[j] = closest; } for (int i = 0; i < segmentation.Length(); i++) { segmentation.Put1d(i, assignments[segmentation.At1d(i)]); } ImgLabels.renumber_labels(segmentation, 1); }