Example #1
0
        public IWeightMatrix Step(IWeightMatrix input, IComputeGraph innerGraph)
        {
            var hidden_prev = ht;
            var cell_prev   = ct;

            var inputs = innerGraph.ConcatColumns(input, hidden_prev);
            var bs     = innerGraph.RepeatRows(b, input.Rows);
            var hhSum  = innerGraph.MulAdd(inputs, Wxh, bs);

            (var gates_raw, var cell_write_raw) = innerGraph.SplitColumns(hhSum, hdim * 3, hdim);

            var gates      = innerGraph.Sigmoid(gates_raw);
            var cell_write = innerGraph.Tanh(cell_write_raw);

            (var input_gate, var forget_gate, var output_gate) = innerGraph.SplitColumns(gates, hdim, hdim, hdim);

            // compute new cell activation
            var retain_cell = innerGraph.EltMul(forget_gate, cell_prev); // what do we keep from cell
            var write_cell  = innerGraph.EltMul(input_gate, cell_write); // what do we write to cell

            ct = innerGraph.Add(retain_cell, write_cell);                // new cell contents

            // compute hidden state as gated, saturated cell activations
            ht = innerGraph.EltMul(output_gate, innerGraph.Tanh(ct));

            return(ht);
        }
Example #2
0
        public IWeightTensor Step(IWeightTensor input, IComputeGraph g)
        {
            using (IComputeGraph innerGraph = g.CreateSubGraph(m_name))
            {
                IWeightTensor hidden_prev = m_hidden;
                IWeightTensor cell_prev   = m_cell;

                IWeightTensor inputs = innerGraph.Concate(1, input, hidden_prev);
                IWeightTensor hhSum  = innerGraph.Affine(inputs, m_Wxh, m_b);
                IWeightTensor hhSum2 = m_layerNorm1.Norm(hhSum, innerGraph);

                (IWeightTensor gates_raw, IWeightTensor cell_write_raw) = innerGraph.SplitColumns(hhSum2, m_hdim * 3, m_hdim);
                IWeightTensor gates      = innerGraph.Sigmoid(gates_raw);
                IWeightTensor cell_write = innerGraph.Tanh(cell_write_raw);

                (IWeightTensor input_gate, IWeightTensor forget_gate, IWeightTensor output_gate) = innerGraph.SplitColumns(gates, m_hdim, m_hdim, m_hdim);

                // compute new cell activation: ct = forget_gate * cell_prev + input_gate * cell_write
                m_cell = g.EltMulMulAdd(forget_gate, cell_prev, input_gate, cell_write);
                IWeightTensor ct2 = m_layerNorm2.Norm(m_cell, innerGraph);

                // compute hidden state as gated, saturated cell activations
                m_hidden = g.EltMul(output_gate, innerGraph.Tanh(ct2));

                return(m_hidden);
            }
        }
Example #3
0
        /// <summary>
        /// Update LSTM-Attention cells according to given weights
        /// </summary>
        /// <param name="context">The context weights for attention</param>
        /// <param name="input">The input weights</param>
        /// <param name="computeGraph">The compute graph to build workflow</param>
        /// <returns>Update hidden weights</returns>
        public IWeightMatrix Step(IWeightMatrix context, IWeightMatrix input, IComputeGraph computeGraph)
        {
            var cell_prev   = ct;
            var hidden_prev = ht;

            var hxhc  = computeGraph.ConcatColumns(input, hidden_prev, context);
            var bs    = computeGraph.RepeatRows(b, input.Rows);
            var hhSum = computeGraph.MulAdd(hxhc, Wxhc, bs);

            (var gates_raw, var cell_write_raw) = computeGraph.SplitColumns(hhSum, hdim * 3, hdim);
            var gates      = computeGraph.Sigmoid(gates_raw);
            var cell_write = computeGraph.Tanh(cell_write_raw);

            (var input_gate, var forget_gate, var output_gate) = computeGraph.SplitColumns(gates, hdim, hdim, hdim);

            // compute new cell activation
            //var retain_cell = computeGraph.EltMul(forget_gate, cell_prev);
            //var write_cell = computeGraph.EltMul(input_gate, cell_write);

            //ct = computeGraph.Add(retain_cell, write_cell);


            ct = computeGraph.EltMulMulAdd(forget_gate, cell_prev, input_gate, cell_write);

            ht = computeGraph.EltMul(output_gate, computeGraph.Tanh(ct));

            return(ht);
        }
Example #4
0
        /// <summary>
        /// Update LSTM-Attention cells according to given weights
        /// </summary>
        /// <param name="context">The context weights for attention</param>
        /// <param name="input">The input weights</param>
        /// <param name="computeGraph">The compute graph to build workflow</param>
        /// <returns>Update hidden weights</returns>
        public IWeightTensor Step(IWeightTensor context, IWeightTensor input, IComputeGraph g)
        {
            using (IComputeGraph computeGraph = g.CreateSubGraph(m_name))
            {
                IWeightTensor cell_prev   = Cell;
                IWeightTensor hidden_prev = Hidden;

                IWeightTensor hxhc   = computeGraph.Concate(1, input, hidden_prev, context);
                IWeightTensor hhSum  = computeGraph.Affine(hxhc, m_Wxhc, m_b);
                IWeightTensor hhSum2 = m_layerNorm1.Norm(hhSum, computeGraph);

                (IWeightTensor gates_raw, IWeightTensor cell_write_raw) = computeGraph.SplitColumns(hhSum2, m_hiddenDim * 3, m_hiddenDim);
                IWeightTensor gates      = computeGraph.Sigmoid(gates_raw);
                IWeightTensor cell_write = computeGraph.Tanh(cell_write_raw);

                (IWeightTensor input_gate, IWeightTensor forget_gate, IWeightTensor output_gate) = computeGraph.SplitColumns(gates, m_hiddenDim, m_hiddenDim, m_hiddenDim);

                // compute new cell activation: ct = forget_gate * cell_prev + input_gate * cell_write
                Cell = g.EltMulMulAdd(forget_gate, cell_prev, input_gate, cell_write);
                IWeightTensor ct2 = m_layerNorm2.Norm(Cell, computeGraph);

                Hidden = g.EltMul(output_gate, computeGraph.Tanh(ct2));


                return(Hidden);
            }
        }
Example #5
0
        public IWeightTensor Step(IWeightTensor input, IComputeGraph g)
        {
            using (var innerGraph = g.CreateSubGraph(this.m_name))
            {
                var hidden_prev = this.m_hidden;
                var cell_prev   = this.m_cell;

                var inputs = innerGraph.ConcatColumns(input, hidden_prev);
                var hhSum  = innerGraph.Affine(inputs, this.m_Wxh, this.m_b);
                var hhSum2 = this.m_layerNorm1.Norm(hhSum, innerGraph);

                var(gates_raw, cell_write_raw) = innerGraph.SplitColumns(hhSum2, this.m_hdim * 3, this.m_hdim);
                var gates      = innerGraph.Sigmoid(gates_raw);
                var cell_write = innerGraph.Tanh(cell_write_raw);

                var(input_gate, forget_gate, output_gate) = innerGraph.SplitColumns(gates, this.m_hdim, this.m_hdim, this.m_hdim);

                // compute new cell activation: ct = forget_gate * cell_prev + input_gate * cell_write
                this.m_cell = g.EltMulMulAdd(forget_gate, cell_prev, input_gate, cell_write);
                var ct2 = this.m_layerNorm2.Norm(this.m_cell, innerGraph);

                // compute hidden state as gated, saturated cell activations
                this.m_hidden = g.EltMul(output_gate, innerGraph.Tanh(ct2));

                return(this.m_hidden);
            }
        }
Example #6
0
        public IWeightMatrix Step(IWeightMatrix input, IComputeGraph innerGraph)
        {
            var hidden_prev = ht;
            var cell_prev   = ct;

            var inputs = innerGraph.ConcatColumns(input, hidden_prev);
            var bs     = innerGraph.RepeatRows(b, input.Rows);
            var hhSum  = innerGraph.MulAdd(inputs, Wxh, bs);
            var hhSum2 = layerNorm1.Process(hhSum, innerGraph);

            (var gates_raw, var cell_write_raw) = innerGraph.SplitColumns(hhSum2, hdim * 3, hdim);
            var gates      = innerGraph.Sigmoid(gates_raw);
            var cell_write = innerGraph.Tanh(cell_write_raw);

            (var input_gate, var forget_gate, var output_gate) = innerGraph.SplitColumns(gates, hdim, hdim, hdim);

            // compute new cell activation: ct = forget_gate * cell_prev + input_gate * cell_write
            ct = innerGraph.EltMulMulAdd(forget_gate, cell_prev, input_gate, cell_write);
            var ct2 = layerNorm2.Process(ct, innerGraph);

            // compute hidden state as gated, saturated cell activations
            ht = innerGraph.EltMul(output_gate, innerGraph.Tanh(ct2));

            return(ht);
        }
        /// <summary>
        /// Update LSTM-Attention cells according to given weights
        /// </summary>
        /// <param name="context">The context weights for attention</param>
        /// <param name="input">The input weights</param>
        /// <param name="computeGraph">The compute graph to build workflow</param>
        /// <returns>Update hidden weights</returns>
        public IWeightTensor Step(IWeightTensor context, IWeightTensor input, IComputeGraph g)
        {
            using (var computeGraph = g.CreateSubGraph(this.m_name))
            {
                var cell_prev   = this.Cell;
                var hidden_prev = this.Hidden;

                var hxhc   = computeGraph.ConcatColumns(input, hidden_prev, context);
                var hhSum  = computeGraph.Affine(hxhc, this.m_Wxhc, this.m_b);
                var hhSum2 = this.m_layerNorm1.Norm(hhSum, computeGraph);

                var(gates_raw, cell_write_raw) = computeGraph.SplitColumns(hhSum2, this.m_hiddenDim * 3, this.m_hiddenDim);
                var gates      = computeGraph.Sigmoid(gates_raw);
                var cell_write = computeGraph.Tanh(cell_write_raw);

                var(input_gate, forget_gate, output_gate) = computeGraph.SplitColumns(gates, this.m_hiddenDim, this.m_hiddenDim, this.m_hiddenDim);

                // compute new cell activation: ct = forget_gate * cell_prev + input_gate * cell_write
                this.Cell = g.EltMulMulAdd(forget_gate, cell_prev, input_gate, cell_write);
                var ct2 = this.m_layerNorm2.Norm(this.Cell, computeGraph);

                this.Hidden = g.EltMul(output_gate, computeGraph.Tanh(ct2));


                return(this.Hidden);
            }
        }
        /// <summary>
        /// Update LSTM-Attention cells according to given weights
        /// </summary>
        /// <param name="context">The context weights for attention</param>
        /// <param name="input">The input weights</param>
        /// <param name="computeGraph">The compute graph to build workflow</param>
        /// <returns>Update hidden weights</returns>
        public IWeightMatrix Step(IWeightMatrix context, IWeightMatrix input, IComputeGraph computeGraph)
        {
            var cell_prev   = ct;
            var hidden_prev = ht;

            var hxhc   = computeGraph.ConcatColumns(input, hidden_prev, context);
            var bs     = computeGraph.RepeatRows(b, input.Rows);
            var hhSum  = computeGraph.MulAdd(hxhc, Wxhc, bs);
            var hhSum2 = layerNorm1.Process(hhSum, computeGraph);

            (var gates_raw, var cell_write_raw) = computeGraph.SplitColumns(hhSum2, hdim * 3, hdim);
            var gates      = computeGraph.Sigmoid(gates_raw);
            var cell_write = computeGraph.Tanh(cell_write_raw);

            (var input_gate, var forget_gate, var output_gate) = computeGraph.SplitColumns(gates, hdim, hdim, hdim);

            // compute new cell activation: ct = forget_gate * cell_prev + input_gate * cell_write
            ct = computeGraph.EltMulMulAdd(forget_gate, cell_prev, input_gate, cell_write);
            var ct2 = layerNorm2.Process(ct, computeGraph);

            ht = computeGraph.EltMul(output_gate, computeGraph.Tanh(ct2));

            return(ht);
        }
Example #9
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="computeGraph">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph computeGraph, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions)
        {
            int batchSize = sntPairBatch.BatchSize;

            float cost = 0.0f;
            var   nrs  = new List <NetworkResult>();
            var   nr   = new NetworkResult {
                Output = new List <List <List <string> > >()
            };

            (IEncoder encoder, IWeightTensor srcEmbedding, IFeedForwardLayer encoderFFLayer, IWeightTensor posEmbedding, IWeightTensor segmentEmbedding) = GetNetworksOnDeviceAt(deviceIdIdx);

            IWeightTensor encOutput1;
            IWeightTensor encOutput2;

            if (!isTraining && (m_options.ProcessorType == ProcessorTypeEnums.CPU))
            {
                //We only check cache at inference time
                string cacheKey1 = GenerateCacheKey(sntPairBatch.GetSrcTokens(0));
                if (!m_memoryCache.TryGetValue(cacheKey1, out encOutput1))
                {
                    encOutput1 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 0); // output shape: [batch_size, dim]

                    var cacheEntryOptions = new MemoryCacheEntryOptions().SetSize(1);
                    m_memoryCache.Set(cacheKey1, encOutput1.CopyWeightsRef($"cache_{encOutput1.Name}", false), cacheEntryOptions);
                }

                string cacheKey2 = GenerateCacheKey(sntPairBatch.GetSrcTokens(1));
                if (!m_memoryCache.TryGetValue(cacheKey2, out encOutput2))
                {
                    encOutput2 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 1); // output_shape: [batch_size, dim]

                    var cacheEntryOptions = new MemoryCacheEntryOptions().SetSize(1);
                    m_memoryCache.Set(cacheKey2, encOutput2.CopyWeightsRef($"cache_{encOutput2.Name}", false), cacheEntryOptions);
                }
            }
            else
            {
                //We always run encoder network during training time or using GPUs
                encOutput1 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 0); // output shape: [batch_size, dim]
                encOutput2 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 1); // output_shape: [batch_size, dim]
            }

            if (m_modelMetaData.SimilarityType.Equals("Continuous", StringComparison.InvariantCultureIgnoreCase))
            {
                // Cosine similairy
                var w12 = computeGraph.EltMul(encOutput1, encOutput2);
                w12 = computeGraph.Sum(w12, 1);
                var w1 = computeGraph.EltMul(encOutput1, encOutput1);
                w1 = computeGraph.Sum(w1, 1);
                var w2 = computeGraph.EltMul(encOutput2, encOutput2);
                w2 = computeGraph.Sum(w2, 1);
                var n12 = computeGraph.EltMul(w1, w2);
                n12 = computeGraph.Rsqrt(n12);
                var probs = computeGraph.EltMul(w12, n12);
                if (isTraining)
                {
                    var tgtSnts = sntPairBatch.GetTgtTokens(0);
                    for (int k = 0; k < batchSize; k++)
                    {
                        float golden_score_k = float.Parse(tgtSnts[k][0]); // Get golden similiary score from target side
                        float score_k        = probs.GetWeightAt(new long[] { k, 0 });

                        probs.SetWeightAt(score_k - golden_score_k, new long[] { k, 0 });
                        cost += (float)Math.Abs(score_k - golden_score_k);
                    }

                    probs.CopyWeightsToGradients(probs);
                    nr.Cost = cost / batchSize;
                }
                else
                {
                    nr.Output.Add(new List <List <string> >());
                    for (int k = 0; k < batchSize; k++)
                    {
                        float score_k = probs.GetWeightAt(new long[] { k, 0 });

                        nr.Output[0].Add(new List <string>());
                        nr.Output[0][k].Add(score_k.ToString());
                    }
                }
            }
            else
            {
                IWeightTensor encOutput = computeGraph.EltMul(encOutput1, encOutput2);
                IWeightTensor ffLayer   = encoderFFLayer.Process(encOutput, batchSize, computeGraph);
                using (IWeightTensor probs = computeGraph.Softmax(ffLayer, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        var tgtSnts = sntPairBatch.GetTgtTokens(0);
                        for (int k = 0; k < batchSize; k++)
                        {
                            int   ix_targets_k_j = m_modelMetaData.ClsVocab.GetWordIndex(tgtSnts[k][0]);
                            float score_k        = probs.GetWeightAt(new long[] { k, ix_targets_k_j });
                            cost += (float)-Math.Log(score_k);
                            probs.SetWeightAt(score_k - 1, new long[] { k, ix_targets_k_j });
                        }

                        ffLayer.CopyWeightsToGradients(probs);

                        nr.Cost = cost / batchSize;
                    }
                    else
                    {
                        // Output "i"th target word
                        using var targetIdxTensor = computeGraph.Argmax(probs, 1);
                        float[]       targetIdx   = targetIdxTensor.ToWeightArray();
                        List <string> targetWords = m_modelMetaData.ClsVocab.ConvertIdsToString(targetIdx.ToList());
                        nr.Output.Add(new List <List <string> >());

                        for (int k = 0; k < batchSize; k++)
                        {
                            nr.Output[0].Add(new List <string>());
                            nr.Output[0][k].Add(targetWords[k]);
                        }
                    }
                }
            }


            nrs.Add(nr);

            return(nrs);
        }