public IWeightMatrix Step(IWeightMatrix input, IComputeGraph innerGraph) { var hidden_prev = ht; var cell_prev = ct; var inputs = innerGraph.ConcatColumns(input, hidden_prev); var bs = innerGraph.RepeatRows(b, input.Rows); var hhSum = innerGraph.MulAdd(inputs, Wxh, bs); (var gates_raw, var cell_write_raw) = innerGraph.SplitColumns(hhSum, hdim * 3, hdim); var gates = innerGraph.Sigmoid(gates_raw); var cell_write = innerGraph.Tanh(cell_write_raw); (var input_gate, var forget_gate, var output_gate) = innerGraph.SplitColumns(gates, hdim, hdim, hdim); // compute new cell activation var retain_cell = innerGraph.EltMul(forget_gate, cell_prev); // what do we keep from cell var write_cell = innerGraph.EltMul(input_gate, cell_write); // what do we write to cell ct = innerGraph.Add(retain_cell, write_cell); // new cell contents // compute hidden state as gated, saturated cell activations ht = innerGraph.EltMul(output_gate, innerGraph.Tanh(ct)); return(ht); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="input">The input tensor</param> /// <param name="g">The instance of computing graph</param> /// <returns></returns> public IWeightTensor Perform(IWeightTensor input, IComputeGraph graph) { IComputeGraph g = graph.CreateSubGraph(m_name); var seqLen = input.Rows / m_batchSize; //Input projections var allQ = g.View(Q.Process(input, g), m_batchSize, seqLen, m_multiHeadNum, m_d); var allK = g.View(K.Process(input, g), m_batchSize, seqLen, m_multiHeadNum, m_d); var allV = g.View(V.Process(input, g), m_batchSize, seqLen, m_multiHeadNum, m_d); //Multi-head attentions var Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), m_multiHeadNum * m_batchSize, seqLen, m_d); var Ks = g.View(g.Permute(allK, 2, 0, 3, 1), m_multiHeadNum * m_batchSize, m_d, seqLen); var Vs = g.View(g.Permute(allV, 2, 0, 1, 3), m_multiHeadNum * m_batchSize, seqLen, m_d); // Scaled softmax float scale = 1.0f / (float)Math.Sqrt(m_d); var attn = g.MulBatch(Qs, Ks, m_multiHeadNum * m_batchSize, scale); var attn2 = g.View(attn, m_multiHeadNum * m_batchSize * seqLen, seqLen); var softmax = g.Softmax(attn2); var softmax2 = g.View(softmax, m_multiHeadNum * m_batchSize, seqLen, seqLen); var o = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * m_batchSize), m_multiHeadNum, m_batchSize, seqLen, m_d); var W = g.View(g.Permute(o, 1, 2, 0, 3), m_batchSize * seqLen, m_multiHeadNum * m_d); // Output projection var finalAttResults = g.Affine(W, W0, b0); //Skip connection and layer normaliztion var addedAttResult = g.Add(finalAttResults, input); var normAddedAttResult = layerNorm1.Process(addedAttResult, g); //Feed forward var ffnResult = feedForwardLayer1.Process(normAddedAttResult, g); var reluFFNResult = g.Relu(ffnResult); var ffn2Result = feedForwardLayer2.Process(reluFFNResult, g); //Skip connection and layer normaliztion var addFFNResult = g.Add(ffn2Result, normAddedAttResult); var normAddFFNResult = layerNorm2.Process(addFFNResult, g); return(normAddFFNResult); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="keyMask">The mask for softmax</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public (IWeightTensor, IWeightTensor) Perform(IWeightTensor inputQ, IWeightTensor keyMask, int batchSize, IComputeGraph graph, bool outputAttenWeights = false) { using IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention"); int seqLenQ = inputQ.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); //Input projections var weightedQKV = g.View(g.Affine(inputQNorm, QKV, QKVb), dims: new long[] { batchSize, seqLenQ, 3, m_multiHeadNum, m_d }); var allQ = g.Select(weightedQKV, 2, 0); var allK = g.Select(weightedQKV, 2, 1); var allV = g.Select(weightedQKV, 2, 2); //Multi-head attentions IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenQ }); IWeightTensor Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d }); // Scaled softmax float scale = 1.0f / (float)(Math.Sqrt(m_d)); var attn = g.MulBatch(Qs, Ks, scale); attn = g.View(attn, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenQ }); if (keyMask != null) { attn = g.Add(attn, keyMask, inPlace: true); } var attnProbs = g.Softmax(attn, inPlace: true); IWeightTensor sumAttnWeights = null; if (outputAttenWeights) { //Merge all attention probs over multi-heads sumAttnWeights = graph.Sum(attnProbs, 1); sumAttnWeights = graph.Div(sumAttnWeights, (float)m_multiHeadNum); sumAttnWeights = graph.View(sumAttnWeights, new long[] { batchSize *seqLenQ, seqLenQ }); } attnProbs = g.View(attnProbs, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenQ }); IWeightTensor o = g.View(g.MulBatch(attnProbs, Vs), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d }); IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); IWeightTensor result = graph.Add(finalAttResults, inputQ, inPlace: true); return(result, sumAttnWeights); }
public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { if (m_sharedQKV == false) { throw new ArgumentException($"Layer '{m_name}' is not in shared QKV mode, please call another Perform function with three separated input tensors."); } using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention_SharedQKV")) { int seqLenQ = inputQ.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); //Input projections float scale = 1.0f / (float)(m_inputDim); IWeightTensor mulQ, mulK, mulV; using (IWeightTensor inputQNormView = g.View(inputQNorm, dims: new long[] { 1, inputQ.Rows, inputQ.Columns })) { using (IWeightTensor inputQNormViewExp = g.Expand(inputQNormView, dims: new long[] { 3, inputQ.Rows, inputQ.Columns })) { using (IWeightTensor mulQKV = g.MulBatch(inputQNormViewExp, QKV, 3, scale)) { mulQ = g.Select(mulQKV, 0, 0); mulK = g.Select(mulQKV, 0, 1); mulV = g.Select(mulQKV, 0, 2); } } } IWeightTensor allQ = g.View(mulQ, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(mulK, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(mulV, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenQ }); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); // Scaled softmax scale = 1.0f / (float)(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor softmax = g.Softmax(attn, keyMask, inPlace: true); IWeightTensor o = g.View(g.MulBatch(softmax, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d }); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }
public IWeightTensor Perform(IWeightTensor input, int batchSize, IComputeGraph graph) { using IComputeGraph g = graph.CreateSubGraph($"{m_name}_PositionwiseFeedForward"); var inputNorm = layerNorm2.Norm(input, g); //Feed forward IWeightTensor ffnResult = feedForwardLayer1.Process(inputNorm, batchSize, g); IWeightTensor reluFFNResult = g.Relu(ffnResult, inPlace: true); IWeightTensor ffn2Result = feedForwardLayer2.Process(reluFFNResult, batchSize, g); //Skip connection and layer normaliztion IWeightTensor addFFNResult = graph.Add(ffn2Result, input, inPlace: true); return(addFFNResult); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention")) { int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNorm1.Norm(inputQ, g); IWeightTensor inputKNorm = (inputK == inputQ) ? inputQNorm : inputK; // layerNorm1.Norm(inputK, g); IWeightTensor inputVNorm = (inputK == inputV) ? inputKNorm : inputV; // layerNorm1.Norm(inputV, g); //Input projections IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(g.Affine(inputKNorm, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputVNorm, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenK }); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenV, m_d }); // Scaled softmax float scale = 1.0f / (float)Math.Sqrt(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor attn2 = g.View(attn, dims: new long[] { m_multiHeadNum *batchSize *seqLenQ, seqLenK }); if (keyMask != null) { // attn2 = g.Add(attn2, mask, runGradient2: false); attn2 = g.MaskFill(attn2, keyMask, -1e9f); } IWeightTensor softmax = g.Softmax(attn2, inPlace: true); IWeightTensor softmax2 = g.View(softmax, dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, seqLenK }); IWeightTensor o = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d }); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="input">The input tensor</param> /// <param name="g">The instance of computing graph</param> /// <returns></returns> public IWeightTensor Perform(IWeightTensor input, int batchSize, IComputeGraph graph) { using (IComputeGraph g = graph.CreateSubGraph(m_name)) { int seqLen = input.Rows / batchSize; IWeightTensor nInput = layerNorm1.Norm(input, g); //Input projections IWeightTensor allQ = g.View(g.Affine(nInput, Q, Qb), batchSize, seqLen, m_multiHeadNum, m_d); IWeightTensor allK = g.View(g.Affine(nInput, K, Kb), batchSize, seqLen, m_multiHeadNum, m_d); IWeightTensor allV = g.View(g.Affine(nInput, V, Vb), batchSize, seqLen, m_multiHeadNum, m_d); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), m_multiHeadNum * batchSize, seqLen, m_d); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), m_multiHeadNum * batchSize, m_d, seqLen); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), m_multiHeadNum * batchSize, seqLen, m_d); // Scaled softmax float scale = 1.0f / (float)Math.Sqrt(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor attn2 = g.View(attn, m_multiHeadNum * batchSize * seqLen, seqLen); IWeightTensor softmax = g.Softmax(attn2, inPlace: true); IWeightTensor softmax2 = g.View(softmax, m_multiHeadNum * batchSize, seqLen, seqLen); IWeightTensor o = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * batchSize), m_multiHeadNum, batchSize, seqLen, m_d); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), batchSize * seqLen, m_multiHeadNum * m_d); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); //Skip connection and layer normaliztion IWeightTensor normAddedAttResult = layerNorm2.AddNorm(finalAttResults, input, g); //Feed forward IWeightTensor ffnResult = feedForwardLayer1.Process(normAddedAttResult, batchSize, g); IWeightTensor reluFFNResult = g.Relu(ffnResult); IWeightTensor ffn2Result = feedForwardLayer2.Process(reluFFNResult, batchSize, g); //Skip connection and layer normaliztion IWeightTensor addFFNResult = graph.Add(ffn2Result, normAddedAttResult); return(addFFNResult); } }
private IWeightTensor AddPositionEmbedding(IComputeGraph g, IWeightTensor posEmbedding, int batchSize, int seqLen, IWeightTensor inputEmbs) { using (var posEmbeddingPeek = g.PeekRow(posEmbedding, 0, seqLen, false)) { using (var posEmbeddingPeekView = g.View(posEmbeddingPeek, false, new long[] { 1, seqLen, this.m_modelMetaData.EmbeddingDim })) { using (var posEmbeddingPeekViewExp = g.Expand(posEmbeddingPeekView, false, new long[] { batchSize, seqLen, this.m_modelMetaData.EmbeddingDim })) { inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize, seqLen, this.m_modelMetaData.EmbeddingDim }); inputEmbs = g.Add(inputEmbs, posEmbeddingPeekViewExp, true, false); inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize *seqLen, this.m_modelMetaData.EmbeddingDim }); } } } inputEmbs = g.Dropout(inputEmbs, batchSize, this.m_dropoutRatio, true); return(inputEmbs); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { if (m_sharedQKV) { throw new ArgumentException($"Layer '{m_name}' is in shared QKV mode, please call antoher Perform function with single input tensor."); } using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention")) { int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); //Input projections float scale = 1.0f / (float)(m_inputDim); IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb, scale), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(g.Affine(inputK, K, Kb, scale), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputV, V, Vb, scale), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenK }); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenV, m_d }); // Scaled softmax scale = 1.0f / (float)(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor softmax = g.Softmax(attn, keyMask, inPlace: true); IWeightTensor o = g.View(g.MulBatch(softmax, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d }); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }
/// <summary> /// Transformer encoder /// </summary> /// <param name="rawInputs"></param> /// <param name="g"></param> /// <returns></returns> public IWeightTensor Encode(IWeightTensor rawInput, IComputeGraph g) { int seqLen = rawInput.Rows / m_batchSize; var posEmbedding = g.BuildPositionMatrix(seqLen, m_inputDim); var posEmbeddingRepeat = g.RepeatRows(posEmbedding, m_batchSize); // Transpose to batch-first based sequence var inputs = g.TransposeBatch(rawInput, m_batchSize); inputs = g.Mul(inputs, (float)Math.Sqrt(m_inputDim)); inputs = g.Add(inputs, posEmbeddingRepeat); for (int k = 0; k < m_encoders.Count; k++) { inputs = m_encoders[k].Perform(inputs, g); } // Transpose back to time-first based sequence rawInput = g.TransposeBatch(inputs, seqLen); return(rawInput); }
public static IWeightTensor AddPositionEmbedding(IComputeGraph g, IWeightTensor posEmbedding, int batchSize, IWeightTensor inputEmbs, float dropoutRatio) { var Column = posEmbedding.Columns; int seqLen = inputEmbs.Rows / batchSize; using (var posEmbeddingPeek = g.Peek(posEmbedding, 0, 0, seqLen)) { using (var posEmbeddingPeekView = g.View(posEmbeddingPeek, dims: new long[] { 1, seqLen, Column })) { using (var posEmbeddingPeekViewExp = g.Expand(posEmbeddingPeekView, dims: new long[] { batchSize, seqLen, Column })) { inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize, seqLen, Column }); inputEmbs = g.Add(inputEmbs, posEmbeddingPeekViewExp, inPlace: true); inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize *seqLen, Column }); } } } inputEmbs = g.Dropout(inputEmbs, batchSize, dropoutRatio, inPlace: true); return(inputEmbs); }
private IWeightTensor AddPositionEmbedding(IComputeGraph g, IWeightTensor posEmbedding, int batchSize, int seqLen, IWeightTensor inputEmbs) { var Column = posEmbedding.Columns; inputEmbs = g.Mul(inputEmbs, (float)Math.Sqrt(m_modelMetaData.HiddenDim)); using (var posEmbeddingPeek = g.PeekRow(posEmbedding, 0, seqLen, false)) { using (var posEmbeddingPeekView = g.View(posEmbeddingPeek, runGradient: false, dims: new long[] { 1, seqLen, Column })) { using (var posEmbeddingPeekViewExp = g.Expand(posEmbeddingPeekView, runGradient: false, dims: new long[] { batchSize, seqLen, Column })) { inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize, seqLen, Column }); inputEmbs = g.Add(inputEmbs, posEmbeddingPeekViewExp, true, false); inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize *seqLen, Column }); } } } inputEmbs = g.Dropout(inputEmbs, batchSize, m_dropoutRatio, inPlace: true); return(inputEmbs); }
/// <summary> /// Update LSTM-Attention cells according to given weights /// </summary> /// <param name="context">The context weights for attention</param> /// <param name="input">The input weights</param> /// <param name="computeGraph">The compute graph to build workflow</param> /// <returns>Update hidden weights</returns> public IWeightMatrix Step(IWeightMatrix context, IWeightMatrix input, IComputeGraph computeGraph) { var cell_prev = ct; var hidden_prev = ht; var hxhc = computeGraph.ConcatColumns(input, hidden_prev, context); var bs = computeGraph.RepeatRows(b, input.Rows); var hhSum = computeGraph.MulAdd(hxhc, Wxhc, bs); (var gates_raw, var cell_write_raw) = computeGraph.SplitColumns(hhSum, hdim * 3, hdim); var gates = computeGraph.Sigmoid(gates_raw); var cell_write = computeGraph.Tanh(cell_write_raw); (var input_gate, var forget_gate, var output_gate) = computeGraph.SplitColumns(gates, hdim, hdim, hdim); // compute new cell activation var retain_cell = computeGraph.EltMul(forget_gate, cell_prev); var write_cell = computeGraph.EltMul(input_gate, cell_write); ct = computeGraph.Add(retain_cell, write_cell); ht = computeGraph.EltMul(output_gate, computeGraph.Tanh(ct)); return(ht); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="keyMask">The mask for softmax</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public (IWeightTensor, IWeightTensor) Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph, bool outputAttenWeights = false, Dictionary <string, IWeightTensor> cachedTensors = null) { string keyName = $"{m_name}_MultiHeadAttention"; using IComputeGraph g = graph.CreateSubGraph(keyName); int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); //Input projections IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d }); IWeightTensor Ks = null; IWeightTensor Vs = null; if (cachedTensors == null) // We don't use any cached tensors { IWeightTensor allK = g.View(g.Affine(inputK, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputV, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK }); Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d }); } else { string KsCacheName = keyName + "_" + nameof(Ks); string VsCacheName = keyName + "_" + nameof(Vs); if (cachedTensors.ContainsKey(KsCacheName) == false) { IWeightTensor allK = g.View(g.Affine(inputK, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK }); cachedTensors.Add(KsCacheName, Ks.CopyWeightsRef(KsCacheName, Ks.NeedGradient)); } else { Ks = cachedTensors[KsCacheName]; } if (cachedTensors.ContainsKey(VsCacheName) == false) { IWeightTensor allV = g.View(g.Affine(inputV, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d }); cachedTensors.Add(VsCacheName, Vs.CopyWeightsRef(VsCacheName, Vs.NeedGradient)); } else { Vs = cachedTensors[VsCacheName]; } } // Scaled softmax float scale = 1.0f / (float)(Math.Sqrt(m_d)); var attn = g.MulBatch(Qs, Ks, scale); attn = g.View(attn, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenK }); if (keyMask != null) { attn = g.Add(attn, keyMask, inPlace: true); } var attnProbs = g.Softmax(attn, inPlace: true); IWeightTensor sumAttnWeights = null; if (outputAttenWeights) { sumAttnWeights = g.Select(attnProbs, 1, 0); for (int i = 1; i < m_multiHeadNum; i++) { var tmp = g.Select(attnProbs, 1, i); sumAttnWeights = g.Add(sumAttnWeights, tmp); } sumAttnWeights = graph.Div(sumAttnWeights, (float)m_multiHeadNum); sumAttnWeights = graph.View(sumAttnWeights, new long[] { batchSize *seqLenQ, seqLenK }); } attnProbs = g.View(attnProbs, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenK }); IWeightTensor o = g.View(g.MulBatch(attnProbs, Vs), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d }); IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); IWeightTensor result = graph.Add(finalAttResults, inputQ, inPlace: true); return(result, sumAttnWeights); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="keyMask">The mask for softmax</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention")) { int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); if (inputK == inputQ) { inputK = inputQNorm; } if (inputV == inputQ) { inputV = inputQNorm; } //Input projections float scale = 1.0f; IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb, scale), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(g.Affine(inputK, K, Kb, scale), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputV, V, Vb, scale), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK }); IWeightTensor Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d }); // Scaled softmax scale = 1.0f / (float)(Math.Sqrt(m_d)); IWeightTensor attn = g.MulBatch(Qs, Ks, batchSize * m_multiHeadNum, scale); if (keyMask != null) { using (var keyMaskView = g.View(keyMask, runGradient: false, dims: new long[] { batchSize, 1, seqLenQ, seqLenK })) { using (var keyMaskViewExp = g.Expand(keyMaskView, runGradient: false, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenK })) { using (var keyMaskViewExpConti = g.AsContiguous(keyMaskViewExp, runGradient: false)) { using (var keyMaskViewExpContiView = g.View(keyMaskViewExpConti, runGradient: false, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenK })) { attn = g.Add(attn, keyMaskViewExpContiView, runGradient1: true, runGradient2: false); } } } } } IWeightTensor softmax = g.Softmax(attn, inPlace: true); IWeightTensor o = g.View(g.MulBatch(softmax, Vs, batchSize * m_multiHeadNum), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d }); IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }
/// <summary> /// Create input embedding from token embeddings, segment embeddings /// </summary> /// <param name="seqs"></param> /// <param name="g"></param> /// <param name="embeddingsTensor"></param> /// <param name="seqOriginalLengths"></param> /// <param name="segmentEmbedding"></param> /// <param name="vocab"></param> /// <returns>The embedding tensor. shape: (batchsize * seqLen, embedding_dim) </returns> public static IWeightTensor CreateTokensEmbeddings(List <List <int> > seqs, IComputeGraph g, IWeightTensor embeddingsTensor, IWeightTensor segmentEmbedding, Vocab vocab, float scaleFactor = 1.0f, bool enableTagEmbedding = false) { int batchSize = seqs.Count; int seqLen = seqs[0].Count; float[] idxs = new float[batchSize * seqLen]; float[] segIdxs = new float[batchSize * seqLen]; List <float[]> tagIdxsList = new List <float[]>(); //float[] tagIdxs = new float[batchSize * seqLen]; for (int i = 0; i < batchSize; i++) { int segIdx = 0; List <int> currTagIdxs = new List <int>(); int currTagLevel = 0; for (int j = 0; j < seqLen; j++) { idxs[i * seqLen + j] = seqs[i][j]; segIdxs[i * seqLen + j] = segIdx; string token = vocab.GetString(seqs[i][j]); if (token == BuildInTokens.SEP) { //A new segment segIdx++; } if (enableTagEmbedding) { if (token.StartsWith("<") && token.EndsWith(">") && BuildInTokens.IsPreDefinedToken(token) == false) { if (token[1] == '/') { currTagLevel--; currTagIdxs[currTagLevel] = -1; } else { //A new opening tag while (tagIdxsList.Count <= currTagLevel) { float[] tagIdxs = new float[batchSize * seqLen]; Array.Fill(tagIdxs, -1.0f); tagIdxsList.Add(tagIdxs); } while (currTagIdxs.Count <= currTagLevel) { currTagIdxs.Add(-1); } currTagIdxs[currTagLevel] = seqs[i][j]; currTagLevel++; } } else { for (int k = 0; k < currTagLevel; k++) { tagIdxsList[k][i * seqLen + j] = currTagIdxs[k]; //Logger.WriteLine($"Add tag embeddings: '{currTagIdxs[k]}'"); } } } } } IWeightTensor tagEmbeddings = null; if (enableTagEmbedding) { for (int k = 0; k < tagIdxsList.Count; k++) { var tagEmbeddings_k = g.IndexSelect(embeddingsTensor, tagIdxsList[k], clearWeights: true); if (tagEmbeddings == null) { tagEmbeddings = tagEmbeddings_k; } else { tagEmbeddings = g.Add(tagEmbeddings, tagEmbeddings_k); } } } IWeightTensor embeddingRst = g.IndexSelect(embeddingsTensor, idxs); if (scaleFactor != 1.0f) { embeddingRst = g.Mul(embeddingRst, scaleFactor, inPlace: true); } // Apply segment embeddings to the input sequence embeddings if (segmentEmbedding != null) { embeddingRst = g.Add(embeddingRst, g.IndexSelect(segmentEmbedding, segIdxs)); } if (tagEmbeddings != null) { embeddingRst = g.Add(embeddingRst, tagEmbeddings); } return(embeddingRst); }