private EventHandler <PresenterExecuteEventArgs> GenerateEventHandler(ContentUnit selectedCU, ContentUnit[] choices, IBlackboard blackboard)
        {
            return((object sender, PresenterExecuteEventArgs eventArgs) =>
            {
                var presenterEventArgs = eventArgs as PresenterExecuteEventArgs;

                if (selectedCU != null)
                {
                    Assert.Equal(selectedCU.Content[Text], presenterEventArgs.TextToDisplay);
                    int numOfChoices = choices.Length;
                    Assert.Equal(numOfChoices, presenterEventArgs.Choices.Length);

                    foreach (ContentUnit choice in choices)
                    {
                        Assert.True(Array.Exists(presenterEventArgs.ChoicesToDisplay, element => element.Equals(choice.Content[Text])));
                    }
                }
                else
                {
                    Assert.Equal("", presenterEventArgs.TextToDisplay);
                }

                // Iterate through each of the choices selecting it and confirming that the correct U_IDSelectRequest is added.
                IChoicePresenter_Old cp = (IChoicePresenter_Old)sender;
                for (uint i = 0; i < presenterEventArgs.ChoicesToDisplay.Length; i++)
                {
                    cp.SelectChoice((ContentUnit[])presenterEventArgs.Choices, i);
                    U_IDSelectRequest idSelectRequest = blackboard.LookupSingleton <U_IDSelectRequest>();
                    Assert.True(idSelectRequest.TargetContentUnitID.Equals(choices[i].Metadata[TargetContentUnitID]));
                    blackboard.RemoveUnit(idSelectRequest); // Remove the U_IDSelect request before the next iteration.
                }
            });
        }
Example #2
0
 public static void RemoveUnits(IBlackboard blackboard, IUnit[] unitsToRemove)
 {
     foreach (IUnit unit in unitsToRemove)
     {
         Assert.True(blackboard.RemoveUnit(unit));
     }
 }
        public void TestObviationCondition(IBlackboard blackboard, ReactiveKnowledgeSource ks, IUnit[] unitsToAdd)
        {
            blackboard.Clear(); // Clear the blackboard so that there aren't KUs laying around from previous tests.

            // Add the units in unitsToAdd
            foreach (IUnit unitToAdd in unitsToAdd)
            {
                blackboard.AddUnit(unitToAdd);
            }

            // Call KnowledgeSource.Precondition() to get the activated KSs.
            IEnumerable <IKnowledgeSourceActivation> KSAs = ks.Precondition();

            // If there are any activated KSs...
            if (KSAs.Any())
            {
                // First, the obviation condition should evaluate to false since the matching KUs are still on the blackboard.
                foreach (IKnowledgeSourceActivation KSA in KSAs)
                {
                    Assert.False(KSA.EvaluateObviationCondition());
                }

                // Second, remove the units from the blackboard
                foreach (IUnit unitToRemove in unitsToAdd)
                {
                    blackboard.RemoveUnit(unitToRemove);
                }

                // Finally, the obviation condition should now evaluate to true since the matching KUs are no longer on the blackboard.
                foreach (IKnowledgeSourceActivation KSA in KSAs)
                {
                    Assert.True(KSA.EvaluateObviationCondition());
                }
            }
        }
        public CFGExpansionController(Unit rootNode, string grammarRulePool, IBlackboard blackboard)
        {
            this.blackboard = blackboard;

            RootNode = rootNode;

            /*
             * Replace with three filters: KS_SelectTreeLeaves, which creates a content pool containing all the tree leaves meeting some condition,
             * KS_ScheduledTierSelector, which, given a component with a sortable value, selects the lowest (in this case it will be order in which a leaf is added to tree), and
             * KS_ProcessTreeNode, which in this case will activate the ID request and save a reference to the node. KS_ScheduledTierSelector will become abstract, with
             * several children: KS_ScheduledHighestTierSelector, KS_ScheduledLowestTierSelector, KS_UniformTopNTierSelector, KS_UniformBottomNTierSelector,
             * KS_ExponentialDistTierSelector.
             * This decoupling allows other logic to be used in the choice of leaf to expand (such as computing a heuristic for picking a node to expand).
             */
            m_pickLeftmostNodeToExpand = new KS_ScheduledExecute(
                () =>
            {
                var nonTerminalLeafNodes = from Unit node in blackboard.LookupUnits <Unit>()
                                           where node.HasComponent <KC_TreeNode>() && node.IsTreeLeaf()
                                           where node.HasComponent <KC_IDSelectionRequest>()
                                           select node;

                if (nonTerminalLeafNodes.Any())
                {
                    nonTerminalLeafNodes.First().SetActiveRequest(true);

                    /*
                     * Save a reference to the current tree node we're expanding on the blackboard.
                     */
                    Unit leafExpansionRef = new Unit();
                    leafExpansionRef.AddComponent(new KC_UnitReference(CurrentTreeNodeExpansion, true, nonTerminalLeafNodes.First()));
                    blackboard.AddUnit(leafExpansionRef);
                }
            }
                );

            // string idOutputPool = "pool" + DateTime.Now.Ticks;
            string idOutputPool = "idOutputPool";

            m_lookupGrammarRules = new KS_ScheduledIDSelector(blackboard, grammarRulePool, idOutputPool);

            // string uniformDistOutputPool = "pool" + DateTime.Now.Ticks;
            string uniformDistOutputPool = "uniformDistOutputPool";

            m_chooseGrammarRule = new KS_ScheduledUniformDistributionSelector(blackboard, idOutputPool, uniformDistOutputPool, 1);

            /*
             * Replace with KS_ExpandTreeNode. An instance of KS_ExpandTreeNode has:
             * 1) The name of a content pool a unit with a decomposition.
             * 2) The name of a KC_UnitReference containing a pointer to the node to expand.
             */
            m_treeExpander = new KS_ScheduledExecute(
                () =>
            {
                var rule = from unit in blackboard.LookupUnits <Unit>()
                           where unit.HasComponent <KC_ContentPool>() && unit.ContentPoolEquals(uniformDistOutputPool)
                           select unit;

                /*
                 * Grab the reference to the current leaf node we're expanding.
                 */
                var nodeToExpandQuery = from unit in blackboard.LookupUnits <Unit>()
                                        where unit.HasComponent <KC_UnitReference>()
                                        select unit;
                Unit nodeToExpandRef = nodeToExpandQuery.First();

                if (rule.Any())
                {
                    Debug.Assert(rule.Count() == 1);              // Only one rule is picked to expand a symbol

                    Debug.Assert(nodeToExpandQuery.Count() == 1); // Should be only one reference we're expanding.

                    Unit selectedRule = rule.First();
                    Unit ruleNode     = new Unit(selectedRule);
                    // Remove the KC_Decomposition (not needed) and KC_ContentPool (will cause node to be prematurely cleaned up) components
                    ruleNode.RemoveComponent(ruleNode.GetComponent <KC_Decomposition>());
                    ruleNode.RemoveComponent(ruleNode.GetComponent <KC_ContentPool>());

                    // fixme: consider defining conversion operators so this looks like
                    // new KC_TreeNode((KC_TreeNode)nodeToExpand);
                    ruleNode.AddComponent(new KC_TreeNode(nodeToExpandRef.GetUnitReference().GetComponent <KC_TreeNode>()));
                    blackboard.AddUnit(ruleNode);

                    // For each of the Units in the decomposition, add them to the tree as children of ruleCopy.
                    foreach (Unit child in selectedRule.GetDecomposition())
                    {
                        // Make a copy of Unit in the decomposition and add it to the tree.
                        Unit childNode = new Unit(child);
                        blackboard.AddUnit(childNode);
                        childNode.AddComponent(new KC_TreeNode(ruleNode.GetComponent <KC_TreeNode>()));
                    }
                }
                else
                {
                    // No rule was found. Create a pseudo-decomposition consisting of just the TargetUnitID in ## (borrowing from Tracery).
                    Unit noRuleTextDecomp = new Unit();
                    noRuleTextDecomp.AddComponent(new KC_TreeNode(nodeToExpandRef.GetUnitReference().GetComponent <KC_TreeNode>()));
                    noRuleTextDecomp.AddComponent(new KC_Text("#" + nodeToExpandRef.GetUnitReference().GetTargetUnitID() + "#", true));
                    blackboard.AddUnit(noRuleTextDecomp);
                }
                blackboard.RemoveUnit(nodeToExpandRef);     // Remove the reference to the leaf node to expand (it has been expanded).
            }
                );

            m_cleanSelectionPools = new KS_ScheduledFilterPoolCleaner(blackboard, new string[] { idOutputPool, uniformDistOutputPool });

            bool GenSequencePrecond()
            {
                var leafNodes = from Unit node in blackboard.LookupUnits <Unit>()
                                where node.HasComponent <KC_TreeNode>() && node.IsTreeLeaf()
                                select node;

                // This is ready to run if no leaf node contains a KC_IDSelectionRequest component (meaning it's a non-terminal).
                return(leafNodes.All(node => !node.HasComponent <KC_IDSelectionRequest>()));
            }

            /*
             * Replace with KS_LinearizeTreeLeaves.
             */
            void GenSequenceExec()
            {
                // Walk the tree to find the leafs from left to right.
                IList <Unit> leafs = new List <Unit>();

                AddLeafs(RootNode, leafs);

                // Write out the leafs of the generated tree
                foreach (Unit leaf in leafs)
                {
                    Console.Write(leaf.GetText() + " ");
                }

                // Delete the tree.
                var treeNodes = from Unit node in blackboard.LookupUnits <Unit>()
                                where node.HasComponent <KC_TreeNode>()
                                select node;

                foreach (var node in treeNodes)
                {
                    blackboard.RemoveUnit(node);
                }
            }

            m_addGeneratedSequence = new KS_ScheduledExecute(GenSequenceExec, GenSequencePrecond);
        }