Example #1
0
        public static void Run()
        {
            DataMaker dataMaker = new DataMaker(STEPS_PER_CYCLE, NUMBER_OF_CYCLES);
            NdArray   trainData = dataMaker.Make();

            FunctionStack model = new FunctionStack("Test8",
                                                    new Linear(true, 1, 5, name: "Linear l1"),
                                                    new LSTM(true, 5, 5, name: "LSTM l2"),
                                                    new Linear(true, 5, 1, name: "Linear l3")
                                                    );

            model.SetOptimizer(new Adam());

            RILogManager.Default?.SendDebug("Training...");
            for (int epoch = 0; epoch < TRAINING_EPOCHS; epoch++)
            {
                NdArray[] sequences = dataMaker.MakeMiniBatch(trainData, MINI_BATCH_SIZE, LENGTH_OF_SEQUENCE);
                Real      loss      = ComputeLoss(model, sequences);

                model.Update();
                model.ResetState();

                if (epoch != 0 && epoch % DISPLAY_EPOCH == 0)
                {
                    RILogManager.Default?.SendDebug("[{0}]training loss:\t{1}", epoch, loss);
                }
            }

            RILogManager.Default?.SendDebug("Testing...");
            NdArray[] testSequences = dataMaker.MakeMiniBatch(trainData, MINI_BATCH_SIZE, LENGTH_OF_SEQUENCE);

            int sample_index = 45;

            predict(testSequences[sample_index], model, PREDICTION_LENGTH);
        }
Example #2
0
        public static void Run()
        {
            //訓練回数
            const int learningCount = 10000;

            //訓練データ
            Real[][] trainData =
            {
                new Real[] { 0, 0 },
                new Real[] { 1, 0 },
                new Real[] { 0, 1 },
                new Real[] { 1, 1 }
            };

            //訓練データラベル
            Real[][] trainLabel =
            {
                new Real[] { 0 },
                new Real[] { 1 },
                new Real[] { 1 },
                new Real[] { 0 }
            };

            //ネットワークの構成を FunctionStack に書き連ねる
            FunctionStack nn = new FunctionStack(
                new Linear(2, 2, name: "l1 Linear"),
                new ReLU(name: "l1 ReLU"),
                new Linear(2, 1, name: "l2 Linear")
                );

            //optimizerを宣言(今回はAdam)
            nn.SetOptimizer(new Adam());

            //訓練ループ
            Console.WriteLine("Training...");
            for (int i = 0; i < learningCount; i++)
            {
                //今回はロス関数にMeanSquaredErrorを使う
                Trainer.Train(nn, trainData[0], trainLabel[0], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[1], trainLabel[1], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[2], trainLabel[2], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[3], trainLabel[3], new MeanSquaredError(), false);

                //訓練後に毎回更新を実行しなければ、ミニバッチとして更新できる
                nn.Update();
            }

            //訓練結果を表示
            Console.WriteLine("Test Start...");
            foreach (Real[] val in trainData)
            {
                NdArray result = nn.Predict(val)[0];
                Console.WriteLine(val[0] + " xor " + val[1] + " = " + (result.Data[0] > 0.5 ? 1 : 0) + " " + result);
            }
        }
Example #3
0
        public static void Run()
        {
            //Number of exercises
            const int learningCount = 10000;

            //Training data
            Real[][] trainData =
            {
                new Real[] { 0, 0 },
                new Real[] { 1, 0 },
                new Real[] { 0, 1 },
                new Real[] { 1, 1 }
            };

            //Training data label
            Real[][] trainLabel =
            {
                new Real[] { 0 },
                new Real[] { 1 },
                new Real[] { 1 },
                new Real[] { 0 }
            };

            //Writing the network configuration in FunctionStack
            FunctionStack nn = new FunctionStack(
                new Linear(2, 2, name: "l1 Linear"),
                new ReLU(name: "l1 ReLU"),
                new Linear(2, 1, name: "l2 Linear")
                );

            //Declare optimizer (Adam in this time)
            nn.SetOptimizer(new Adam());

            //Training loop
            Console.WriteLine("Training...");
            for (int i = 0; i < learningCount; i++)
            {
                //This time use MeanSquaredError for loss function
                Trainer.Train(nn, trainData[0], trainLabel[0], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[1], trainLabel[1], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[2], trainLabel[2], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[3], trainLabel[3], new MeanSquaredError(), false);

                //If you do not update every time after training, you can update it as a mini batch
                nn.Update();
            }

            //Show training results
            Console.WriteLine("Test Start...");
            foreach (Real[] val in trainData)
            {
                NdArray result = nn.Predict(val)[0];
                Console.WriteLine(val[0] + " xor " + val[1] + " = " + (result.Data[0] > 0.5 ? 1 : 0) + " " + result);
            }
        }
Example #4
0
        public static void Run()
        {
            const int learningCount = 10000;

            Real[][] trainData =
            {
                new Real[] { 0, 0 },
                new Real[] { 1, 0 },
                new Real[] { 0, 1 },
                new Real[] { 1, 1 }
            };

            Real[][] trainLabel =
            {
                new Real[] { 0 },
                new Real[] { 1 },
                new Real[] { 1 },
                new Real[] { 0 }
            };

            FunctionStack nn = new FunctionStack("Test2",
                                                 new Linear(true, 2, 2, name: "l1 Linear"),
                                                 new ReLU(name: "l1 ReLU"),
                                                 new Linear(true, 2, 1, name: "l2 Linear"));

            nn.SetOptimizer(new AdaGrad());

            RILogManager.Default?.SendDebug("Training...");
            for (int i = 0; i < learningCount; i++)
            {
                //use MeanSquaredError for loss function
                Trainer.Train(nn, trainData[0], trainLabel[0], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[1], trainLabel[1], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[2], trainLabel[2], new MeanSquaredError(), false);
                Trainer.Train(nn, trainData[3], trainLabel[3], new MeanSquaredError(), false);

                //If you do not update every time after training, you can update it as a mini batch
                nn.Update();
            }

            RILogManager.Default?.SendDebug("Test Start...");
            foreach (Real[] val in trainData)
            {
                NdArray result = nn.Predict(true, val)[0];
                RILogManager.Default?.SendDebug($"{val[0]} xor {val[1]} = {(result.Data[0] > 0.5 ? 1 : 0)} {result}");
            }
        }
Example #5
0
        //バッチで学習処理を行う
        public static Real Train(FunctionStack functionStack, NdArray input, NdArray teach, LossFunction lossFunction, bool isUpdate = true)
        {
            //結果の誤差保存用
            NdArray[] result  = functionStack.Forward(input);
            Real      sumLoss = lossFunction.Evaluate(result, teach);

            //Backwardのバッチを実行
            functionStack.Backward(result);

            //更新
            if (isUpdate)
            {
                functionStack.Update();
            }

            return(sumLoss);
        }
Example #6
0
        //Perform learning process in batch
        public static Real Train(FunctionStack functionStack, NdArray input, NdArray teach, LossFunction lossFunction, bool isUpdate = true)
        {
            //For preserving error of result
            NdArray[] result  = functionStack.Forward(input);
            Real      sumLoss = lossFunction.Evaluate(result, teach);

            //Run Backward's batch
            functionStack.Backward(result);

            //update
            if (isUpdate)
            {
                functionStack.Update();
            }

            return(sumLoss);
        }
Example #7
0
        ////////////////////////////////////////////////////////////////////////////////////////////////////
        /// <summary>   Do a learning process with a batch. </summary>
        ///
        /// <param name="functionStack">    Stack of functions. </param>
        /// <param name="input">            The input data. </param>
        /// <param name="teach">            The teaching data. </param>
        /// <param name="lossFunction">     The loss function. </param>
        /// <param name="isUpdate">         (Optional) True if this object is being updated. </param>
        ///
        /// <returns>   A Real. </returns>
        ////////////////////////////////////////////////////////////////////////////////////////////////////

        public static Real Train([NotNull] FunctionStack functionStack, [CanBeNull] NdArray input, [CanBeNull] NdArray teach, [NotNull] LossFunction lossFunction, bool isUpdate = true,
                                 bool verbose = true)
        {
            if (verbose)
            {
                RILogManager.Default?.EnterMethod("Training " + functionStack.Name);
            }

            if (verbose)
            {
                RILogManager.Default?.SendDebug("Forward propagation");
            }
            NdArray[] result = functionStack.Forward(verbose, input);
            if (verbose)
            {
                RILogManager.Default?.SendDebug("Evaluating loss");
            }
            Real sumLoss = lossFunction.Evaluate(result, teach);

            // Run Backward batch
            if (verbose)
            {
                RILogManager.Default?.SendDebug("Backward propagation");
            }
            functionStack.Backward(verbose, result);

            if (isUpdate)
            {
                if (verbose)
                {
                    RILogManager.Default?.SendDebug("Updating stack");
                }
                functionStack.Update();
            }

            if (verbose)
            {
                RILogManager.Default?.ExitMethod("Training " + functionStack.Name);
                RILogManager.Default?.ViewerSendWatch("Local Loss", sumLoss.ToString(), sumLoss);
            }

            return(sumLoss);
        }
Example #8
0
        public static void Run()
        {
            DataMaker dataMaker = new DataMaker(STEPS_PER_CYCLE, NUMBER_OF_CYCLES);
            NdArray   trainData = dataMaker.Make();

            //Network configuration is written in FunctionStack
            FunctionStack model = new FunctionStack(
                new Linear(1, 5, name: "Linear l1"),
                new LSTM(5, 5, name: "LSTM l2"),
                new Linear(5, 1, name: "Linear l3")
                );

            //Declare optimizer
            model.SetOptimizer(new Adam());

            //Training loop
            Console.WriteLine("Training...");
            for (int epoch = 0; epoch < TRAINING_EPOCHS; epoch++)
            {
                NdArray[] sequences = dataMaker.MakeMiniBatch(trainData, MINI_BATCH_SIZE, LENGTH_OF_SEQUENCE);

                Real loss = ComputeLoss(model, sequences);

                model.Update();

                model.ResetState();

                if (epoch != 0 && epoch % DISPLAY_EPOCH == 0)
                {
                    Console.WriteLine("[{0}]training loss:\t{1}", epoch, loss);
                }
            }

            Console.WriteLine("Testing...");
            NdArray[] testSequences = dataMaker.MakeMiniBatch(trainData, MINI_BATCH_SIZE, LENGTH_OF_SEQUENCE);

            int sample_index = 45;

            predict(testSequences[sample_index], model, PREDICTION_LENGTH);
        }
Example #9
0
        public static void Run()
        {
            // Write the configuration of the network you want to read into FunctionStack and adjust the parameters of each function
            // Make sure to match name to the variable name of Chainer here

            FunctionStack nn = new FunctionStack("Test16",
                                                 new Convolution2D(true, 1, 2, 3, name: "conv1", gpuEnable: true),// Do not forget the GPU flag if necessary
                                                 new ReLU(),
                                                 new MaxPooling(2, 2),
                                                 new Convolution2D(true, 2, 2, 2, name: "conv2", gpuEnable: true),
                                                 new ReLU(),
                                                 new MaxPooling(2, 2),
                                                 new Linear(true, 8, 2, name: "fl3"),
                                                 new ReLU(),
                                                 new Linear(true, 2, 2, name: "fl4")
                                                 );

            /* Chainerでの宣言
             * class NN(chainer.Chain):
             *  def __init__(self):
             *      super(NN, self).__init__(
             *          conv1 = L.Convolution2D(1,2,3),
             *          conv2 = L.Convolution2D(2,2,2),
             *          fl3 = L.Linear(8,2),
             *          fl4 = L.Linear(2,2)
             *      )
             *
             *  def __call__(self, x):
             *      h_conv1 = F.relu(self.conv1(x))
             *      h_pool1 = F.max_pooling_2d(h_conv1, 2)
             *      h_conv2 = F.relu(self.conv2(h_pool1))
             *      h_pool2 = F.max_pooling_2d(h_conv2, 2)
             *      h_fc1 = F.relu(self.fl3(h_pool2))
             *      y = self.fl4(h_fc1)
             *      return y
             */


            // Read parameters
            ChainerModelDataLoader.ModelLoad(MODEL_FILE_PATH, nn);

            // We will use the rest as usual
            nn.SetOptimizer(new SGD());

            NdArray x = new NdArray(new Real[, , ] {
                {
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.9, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.9, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.8, 0.5, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.3, 0.3, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.4, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }
                }
            });

            Real[] t = { 0.0, 1.0 };

            Trainer.Train(nn, x, t, new MeanSquaredError(), false);

            Convolution2D l2 = (Convolution2D)nn.Functions[0];


            RILogManager.Default?.SendDebug("gw1");
            RILogManager.Default?.SendDebug(l2.Weight.ToString("Grad"));
            RILogManager.Default?.SendDebug("gb1");
            RILogManager.Default?.SendDebug(l2.Bias.ToString("Grad"));


            // If Update is executed, grad is consumed, so output the value first
            nn.Update();

            RILogManager.Default?.SendDebug("w1");
            RILogManager.Default?.SendDebug(l2.Weight.ToString());

            RILogManager.Default?.SendDebug("b1");
            RILogManager.Default?.SendDebug(l2.Bias.ToString());
        }
Example #10
0
        public static void Run()
        {
            //各初期値を記述
            Real[,,,] initial_W1 =
            {
                { { { 1.0,  0.5, 0.0 }, {  0.5, 0.0, -0.5 }, { 0.0, -0.5, -1.0 } } },
                { { { 0.0, -0.1, 0.1 }, { -0.3, 0.4,  0.7 }, { 0.5, -0.2,  0.2 } } }
            };
            Real[] initial_b1 = { 0.5, 1.0 };

            Real[,,,] initial_W2 =
            {
                { { { -0.1,  0.6 }, { 0.3, -0.9 } }, { {  0.7, 0.9 }, { -0.2, -0.3 } } },
                { { { -0.6, -0.1 }, { 0.3,  0.3 } }, { { -0.5, 0.8 }, {  0.9,  0.1 } } }
            };
            Real[] initial_b2 = { 0.1, 0.9 };

            Real[,] initial_W3 =
            {
                { 0.5, 0.3, 0.4, 0.2, 0.6, 0.1, 0.4, 0.3 },
                { 0.6, 0.4, 0.9, 0.1, 0.5, 0.2, 0.3, 0.4 }
            };
            Real[] initial_b3 = { 0.01, 0.02 };

            Real[,] initial_W4 = { { 0.8, 0.2 }, { 0.4, 0.6 } };
            Real[] initial_b4 = { 0.02, 0.01 };


            //入力データ
            NdArray x = new NdArray(new Real[, , ] {
                {
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.9, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.9, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.8, 0.5, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.3, 0.3, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.4, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }
                }
            });

            //教師信号
            Real[] t = { 0.0, 1.0 };


            //層の中身をチェックしたい場合は、層単体でインスタンスを持つ
            Convolution2D l2 = new Convolution2D(1, 2, 3, initialW: initial_W1, initialb: initial_b1, name: "l2 Conv2D");

            //ネットワークの構成を FunctionStack に書き連ねる
            FunctionStack nn = new FunctionStack(
                l2, //new Convolution2D(1, 2, 3, initialW: initial_W1, initialb: initial_b1),
                new ReLU(name: "l2 ReLU"),
                //new AveragePooling(2, 2, name: "l2 AVGPooling"),
                new MaxPooling2D(2, 2, name: "l2 MaxPooling"),
                new Convolution2D(2, 2, 2, initialW: initial_W2, initialb: initial_b2, name: "l3 Conv2D"),
                new ReLU(name: "l3 ReLU"),
                //new AveragePooling(2, 2, name: "l3 AVGPooling"),
                new MaxPooling2D(2, 2, name: "l3 MaxPooling"),
                new Linear(8, 2, initialW: initial_W3, initialb: initial_b3, name: "l4 Linear"),
                new ReLU(name: "l4 ReLU"),
                new Linear(2, 2, initialW: initial_W4, initialb: initial_b4, name: "l5 Linear")
                );

            nn.SetOptimizer(new SGD(0.1));

            //訓練を実施
            Trainer.Train(nn, x, t, new MeanSquaredError(), false);

            //Updateを実行するとgradが消費されてしまうため値を先に出力
            Console.WriteLine("gw1");
            Console.WriteLine(l2.Weight.ToString("Grad"));

            Console.WriteLine("gb1");
            Console.WriteLine(l2.Bias.ToString("Grad"));

            //更新
            nn.Update();

            Console.WriteLine("w1");
            Console.WriteLine(l2.Weight);

            Console.WriteLine("b1");
            Console.WriteLine(l2.Bias);
        }
Example #11
0
        public static void Run()
        {
            //MNISTのデータを用意する
            Console.WriteLine("MNIST Data Loading...");
            MnistData mnistData = new MnistData();


            Console.WriteLine("Training Start...");

            //ネットワークの構成を FunctionStack に書き連ねる
            FunctionStack Layer1 = new FunctionStack(
                new Linear(28 * 28, 256, name: "l1 Linear"),
                new BatchNormalization(256, name: "l1 Norm"),
                new ReLU(name: "l1 ReLU")
                );

            FunctionStack Layer2 = new FunctionStack(
                new Linear(256, 256, name: "l2 Linear"),
                new BatchNormalization(256, name: "l2 Norm"),
                new ReLU(name: "l2 ReLU")
                );

            FunctionStack Layer3 = new FunctionStack(
                new Linear(256, 256, name: "l3 Linear"),
                new BatchNormalization(256, name: "l3 Norm"),
                new ReLU(name: "l3 ReLU")
                );

            FunctionStack Layer4 = new FunctionStack(
                new Linear(256, 10, name: "l4 Linear")
                );

            //FunctionStack自身もFunctionとして積み上げられる
            FunctionStack nn = new FunctionStack
                               (
                Layer1,
                Layer2,
                Layer3,
                Layer4
                               );

            FunctionStack DNI1 = new FunctionStack(
                new Linear(256, 1024, name: "DNI1 Linear1"),
                new BatchNormalization(1024, name: "DNI1 Nrom1"),
                new ReLU(name: "DNI1 ReLU1"),
                new Linear(1024, 1024, name: "DNI1 Linear2"),
                new BatchNormalization(1024, name: "DNI1 Nrom2"),
                new ReLU(name: "DNI1 ReLU2"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                );

            FunctionStack DNI2 = new FunctionStack(
                new Linear(256, 1024, name: "DNI2 Linear1"),
                new BatchNormalization(1024, name: "DNI2 Nrom1"),
                new ReLU(name: "DNI2 ReLU1"),
                new Linear(1024, 1024, name: "DNI2 Linear2"),
                new BatchNormalization(1024, name: "DNI2 Nrom2"),
                new ReLU(name: "DNI2 ReLU2"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "DNI2 Linear3")
                );

            FunctionStack DNI3 = new FunctionStack(
                new Linear(256, 1024, name: "DNI3 Linear1"),
                new BatchNormalization(1024, name: "DNI3 Nrom1"),
                new ReLU(name: "DNI3 ReLU1"),
                new Linear(1024, 1024, name: "DNI3 Linear2"),
                new BatchNormalization(1024, name: "DNI3 Nrom2"),
                new ReLU(name: "DNI3 ReLU2"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "DNI3 Linear3")
                );

            //optimizerを宣言
            Layer1.SetOptimizer(new Adam());
            Layer2.SetOptimizer(new Adam());
            Layer3.SetOptimizer(new Adam());
            Layer4.SetOptimizer(new Adam());

            DNI1.SetOptimizer(new Adam());
            DNI2.SetOptimizer(new Adam());
            DNI3.SetOptimizer(new Adam());

            //三世代学習
            for (int epoch = 0; epoch < 20; epoch++)
            {
                Console.WriteLine("epoch " + (epoch + 1));

                Real totalLoss     = 0;
                Real DNI1totalLoss = 0;
                Real DNI2totalLoss = 0;
                Real DNI3totalLoss = 0;

                long totalLossCount     = 0;
                long DNI1totalLossCount = 0;
                long DNI2totalLossCount = 0;
                long DNI3totalLossCount = 0;

                //何回バッチを実行するか
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    //訓練データからランダムにデータを取得
                    TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT);

                    //第一層を実行
                    NdArray[] layer1ForwardResult = Layer1.Forward(datasetX.Data);

                    //第一層の傾きを取得
                    NdArray[] DNI1Result = DNI1.Forward(layer1ForwardResult);

                    //第一層の傾きを適用
                    layer1ForwardResult[0].Grad = DNI1Result[0].Data.ToArray();

                    //第一層を更新
                    Layer1.Backward(layer1ForwardResult);
                    layer1ForwardResult[0].ParentFunc = null; //Backwardを実行したので計算グラフを切っておく
                    Layer1.Update();

                    //第二層を実行
                    NdArray[] layer2ForwardResult = Layer2.Forward(layer1ForwardResult);

                    //第二層の傾きを取得
                    NdArray[] DNI2Result = DNI2.Forward(layer2ForwardResult);

                    //第二層の傾きを適用
                    layer2ForwardResult[0].Grad = DNI2Result[0].Data.ToArray();

                    //第二層を更新
                    Layer2.Backward(layer2ForwardResult);
                    layer2ForwardResult[0].ParentFunc = null;

                    //第一層用のDNIの学習を実行
                    Real DNI1loss = new MeanSquaredError().Evaluate(DNI1Result, new NdArray(layer1ForwardResult[0].Grad, DNI1Result[0].Shape, DNI1Result[0].BatchCount));

                    Layer2.Update();

                    DNI1.Backward(DNI1Result);
                    DNI1.Update();

                    DNI1totalLoss += DNI1loss;
                    DNI1totalLossCount++;

                    //第三層を実行
                    NdArray[] layer3ForwardResult = Layer3.Forward(layer2ForwardResult);

                    //第三層の傾きを取得
                    NdArray[] DNI3Result = DNI3.Forward(layer3ForwardResult);

                    //第三層の傾きを適用
                    layer3ForwardResult[0].Grad = DNI3Result[0].Data.ToArray();

                    //第三層を更新
                    Layer3.Backward(layer3ForwardResult);
                    layer3ForwardResult[0].ParentFunc = null;

                    //第二層用のDNIの学習を実行
                    Real DNI2loss = new MeanSquaredError().Evaluate(DNI2Result, new NdArray(layer2ForwardResult[0].Grad, DNI2Result[0].Shape, DNI2Result[0].BatchCount));

                    Layer3.Update();

                    DNI2.Backward(DNI2Result);
                    DNI2.Update();

                    DNI2totalLoss += DNI2loss;
                    DNI2totalLossCount++;

                    //第四層を実行
                    NdArray[] layer4ForwardResult = Layer4.Forward(layer3ForwardResult);

                    //第四層の傾きを取得
                    Real sumLoss = new SoftmaxCrossEntropy().Evaluate(layer4ForwardResult, datasetX.Label);

                    //第四層を更新
                    Layer4.Backward(layer4ForwardResult);
                    layer4ForwardResult[0].ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    //第三層用のDNIの学習を実行
                    Real DNI3loss = new MeanSquaredError().Evaluate(DNI3Result, new NdArray(layer3ForwardResult[0].Grad, DNI3Result[0].Shape, DNI3Result[0].BatchCount));

                    Layer4.Update();

                    DNI3.Backward(DNI3Result);
                    DNI3.Update();

                    DNI3totalLoss += DNI3loss;
                    DNI3totalLossCount++;

                    Console.WriteLine("\nbatch count " + i + "/" + TRAIN_DATA_COUNT);
                    //結果出力
                    Console.WriteLine("total loss " + totalLoss / totalLossCount);
                    Console.WriteLine("local loss " + sumLoss);

                    Console.WriteLine("\nDNI1 total loss " + DNI1totalLoss / DNI1totalLossCount);
                    Console.WriteLine("DNI2 total loss " + DNI2totalLoss / DNI2totalLossCount);
                    Console.WriteLine("DNI3 total loss " + DNI3totalLoss / DNI3totalLossCount);

                    Console.WriteLine("\nDNI1 local loss " + DNI1loss);
                    Console.WriteLine("DNI2 local loss " + DNI2loss);
                    Console.WriteLine("DNI3 local loss " + DNI3loss);

                    //20回バッチを動かしたら精度をテストする
                    if (i % 20 == 0)
                    {
                        Console.WriteLine("\nTesting...");

                        //テストデータからランダムにデータを取得
                        TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT);

                        //テストを実行
                        Real accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        Console.WriteLine("accuracy " + accuracy);
                    }
                }
            }
        }
Example #12
0
        public static void Run()
        {
            //Prepare MNIST data
            Console.WriteLine("MNIST Data Loading...");
            MnistData mnistData = new MnistData();

            Console.WriteLine("Training Start...");

            //Writing the network configuration in FunctionStack
            FunctionStack Layer1 = new FunctionStack(
                new Linear(28 * 28, 256, name: "l1 Linear"),
                new BatchNormalization(256, name: "l1 Norm"),
                new ReLU(name: "l1 ReLU")
                );

            FunctionStack Layer2 = new FunctionStack(
                new Linear(256, 256, name: "l2 Linear"),
                new BatchNormalization(256, name: "l2 Norm"),
                new ReLU(name: "l2 ReLU")
                );

            FunctionStack Layer3 = new FunctionStack(
                new Linear(256, 256, name: "l3 Linear"),
                new BatchNormalization(256, name: "l3 Norm"),
                new ReLU(name: "l3 ReLU")
                );

            FunctionStack Layer4 = new FunctionStack(
                new Linear(256, 10, name: "l4 Linear")
                );

            //FunctionStack itself is also stacked as Function
            FunctionStack nn = new FunctionStack
                               (
                Layer1,
                Layer2,
                Layer3,
                Layer4
                               );

            FunctionStack cDNI1 = new FunctionStack(
                new Linear(256 + 10, 1024, name: "cDNI1 Linear1"),
                new BatchNormalization(1024, name: "cDNI1 Nrom1"),
                new ReLU(name: "cDNI1 ReLU1"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                );

            FunctionStack cDNI2 = new FunctionStack(
                new Linear(256 + 10, 1024, name: "cDNI2 Linear1"),
                new BatchNormalization(1024, name: "cDNI2 Nrom1"),
                new ReLU(name: "cDNI2 ReLU1"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "cDNI2 Linear3")
                );

            FunctionStack cDNI3 = new FunctionStack(
                new Linear(256 + 10, 1024, name: "cDNI3 Linear1"),
                new BatchNormalization(1024, name: "cDNI3 Nrom1"),
                new ReLU(name: "cDNI3 ReLU1"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "cDNI3 Linear3")
                );

            //Declare optimizer
            Layer1.SetOptimizer(new Adam(0.00003f));
            Layer2.SetOptimizer(new Adam(0.00003f));
            Layer3.SetOptimizer(new Adam(0.00003f));
            Layer4.SetOptimizer(new Adam(0.00003f));

            cDNI1.SetOptimizer(new Adam(0.00003f));
            cDNI2.SetOptimizer(new Adam(0.00003f));
            cDNI3.SetOptimizer(new Adam(0.00003f));

            for (int epoch = 0; epoch < 10; epoch++)
            {
                Console.WriteLine("epoch " + (epoch + 1));

                //Total error in the whole
                Real totalLoss      = 0;
                Real cDNI1totalLoss = 0;
                Real cDNI2totalLoss = 0;
                Real cDNI3totalLoss = 0;

                long totalLossCount      = 0;
                long cDNI1totalLossCount = 0;
                long cDNI2totalLossCount = 0;
                long cDNI3totalLossCount = 0;


                //How many times to run the batch
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    //Get data randomly from training data
                    TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT);

                    //Run first tier
                    NdArray[]     layer1ForwardResult = Layer1.Forward(datasetX.Data);
                    ResultDataSet layer1ResultDataSet = new ResultDataSet(layer1ForwardResult, datasetX.Label);

                    //Get the inclination of the first layer
                    NdArray[] cDNI1Result = cDNI1.Forward(layer1ResultDataSet.GetTrainData());

                    //Apply the inclination of the first layer
                    layer1ForwardResult[0].Grad = cDNI1Result[0].Data.ToArray();

                    //Update first layer
                    Layer1.Backward(layer1ForwardResult);
                    layer1ForwardResult[0].ParentFunc = null;
                    Layer1.Update();

                    //Run Layer 2
                    NdArray[]     layer2ForwardResult = Layer2.Forward(layer1ResultDataSet.Result);
                    ResultDataSet layer2ResultDataSet = new ResultDataSet(layer2ForwardResult, layer1ResultDataSet.Label);

                    //Get inclination of second layer
                    NdArray[] cDNI2Result = cDNI2.Forward(layer2ResultDataSet.GetTrainData());

                    //Apply the inclination of the second layer
                    layer2ForwardResult[0].Grad = cDNI2Result[0].Data.ToArray();

                    //Update 2nd tier
                    Layer2.Backward(layer2ForwardResult);
                    layer2ForwardResult[0].ParentFunc = null;


                    //Perform learning of first layer cDNI
                    Real cDNI1loss = new MeanSquaredError().Evaluate(cDNI1Result, new NdArray(layer1ResultDataSet.Result[0].Grad, cDNI1Result[0].Shape, cDNI1Result[0].BatchCount));

                    Layer2.Update();

                    cDNI1.Backward(cDNI1Result);
                    cDNI1.Update();

                    cDNI1totalLoss += cDNI1loss;
                    cDNI1totalLossCount++;

                    //Run Third Tier
                    NdArray[]     layer3ForwardResult = Layer3.Forward(layer2ResultDataSet.Result);
                    ResultDataSet layer3ResultDataSet = new ResultDataSet(layer3ForwardResult, layer2ResultDataSet.Label);

                    //Get the inclination of the third layer
                    NdArray[] cDNI3Result = cDNI3.Forward(layer3ResultDataSet.GetTrainData());

                    //Apply the inclination of the third layer
                    layer3ForwardResult[0].Grad = cDNI3Result[0].Data.ToArray();

                    //Update third layer
                    Layer3.Backward(layer3ForwardResult);
                    layer3ForwardResult[0].ParentFunc = null;

                    //Perform learning of cDNI for layer 2
                    Real cDNI2loss = new MeanSquaredError().Evaluate(cDNI2Result, new NdArray(layer2ResultDataSet.Result[0].Grad, cDNI2Result[0].Shape, cDNI2Result[0].BatchCount));

                    Layer3.Update();

                    cDNI2.Backward(cDNI2Result);
                    cDNI2.Update();

                    cDNI2totalLoss += cDNI2loss;
                    cDNI2totalLossCount++;

                    //Run Layer 4
                    NdArray[] layer4ForwardResult = Layer4.Forward(layer3ResultDataSet.Result);

                    //Get inclination of the fourth layer
                    Real sumLoss = new SoftmaxCrossEntropy().Evaluate(layer4ForwardResult, layer3ResultDataSet.Label);

                    //Update fourth layer
                    Layer4.Backward(layer4ForwardResult);
                    layer4ForwardResult[0].ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    //Perform learning of cDNI for the third layer
                    Real cDNI3loss = new MeanSquaredError().Evaluate(cDNI3Result, new NdArray(layer3ResultDataSet.Result[0].Grad, cDNI3Result[0].Shape, cDNI3Result[0].BatchCount));

                    Layer4.Update();

                    cDNI3.Backward(cDNI3Result);
                    cDNI3.Update();

                    cDNI3totalLoss += cDNI3loss;
                    cDNI3totalLossCount++;

                    Console.WriteLine("\nbatch count " + i + "/" + TRAIN_DATA_COUNT);
                    //Result output
                    Console.WriteLine("total loss " + totalLoss / totalLossCount);
                    Console.WriteLine("local loss " + sumLoss);

                    Console.WriteLine("\ncDNI1 total loss " + cDNI1totalLoss / cDNI1totalLossCount);
                    Console.WriteLine("cDNI2 total loss " + cDNI2totalLoss / cDNI2totalLossCount);
                    Console.WriteLine("cDNI3 total loss " + cDNI3totalLoss / cDNI3totalLossCount);

                    Console.WriteLine("\ncDNI1 local loss " + cDNI1loss);
                    Console.WriteLine("cDNI2 local loss " + cDNI2loss);
                    Console.WriteLine("cDNI3 local loss " + cDNI3loss);

                    //Test the accuracy if you move the batch 20 times
                    if (i % 20 == 0)
                    {
                        Console.WriteLine("\nTesting...");

                        //Get data randomly from test data
                        TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT);

                        //Run test
                        Real accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        Console.WriteLine("accuracy " + accuracy);
                    }
                }
            }
        }
    public static void Main()
    {
        // platformIdは、OpenCL・GPUの導入の記事に書いてある方法でご確認ください
        // https://jinbeizame.hateblo.jp/entry/kelpnet_opencl_gpu
        Weaver.Initialize(ComputeDeviceTypes.Gpu, platformId: 1, deviceIndex: 0);

        // ネットからVGGの学習済みモデルをダウンロード
        string modelFilePath = InternetFileDownloader.Donwload(DOWNLOAD_URL, MODEL_FILE);
        // 学習済みモデルをFunctionのリストとして保存
        List <Function> vgg16Net = CaffemodelDataLoader.ModelLoad(modelFilePath);

        // VGGの出力層とその活性化関数を削除
        vgg16Net.RemoveAt(vgg16Net.Count() - 1);
        vgg16Net.RemoveAt(vgg16Net.Count() - 1);

        // VGGの各FunctionのgpuEnableをtrueに
        for (int i = 0; i < vgg16Net.Count - 1; i++)
        {
            // GPUに対応している層であれば、GPU対応へ
            if (vgg16Net[i] is Convolution2D || vgg16Net[i] is Linear || vgg16Net[i] is MaxPooling)
            {
                ((IParallelizable)vgg16Net[i]).SetGpuEnable(true);
            }
        }

        // VGGをリストからFunctionStackに変換
        FunctionStack vgg = new FunctionStack(vgg16Net.ToArray());

        // 層を圧縮
        vgg.Compress();

        // 新しく出力層とその活性化関数を用意
        FunctionStack nn = new FunctionStack(
            new Linear(4096, 1, gpuEnable: true),
            new Sigmoid()
            );

        // 最適化手法としてAdamをセット
        nn.SetOptimizer(new Adam());

        Console.WriteLine("DataSet Loading...");

        // 訓練・テストデータ用のNdArrayを用意
        // データセットは以下のURLからダウンロードを行い、
        // VGGTransfer /bin/Debug/Data にtrainフォルダを置いてください。
        // https://www.kaggle.com/c/dogs-vs-cats/data
        NdArray[] trainData  = new NdArray[TRAIN_DATA_LENGTH * 2];
        NdArray[] trainLabel = new NdArray[TRAIN_DATA_LENGTH * 2];
        NdArray[] testData   = new NdArray[TEST_DATA_LENGTH * 2];
        NdArray[] testLabel  = new NdArray[TEST_DATA_LENGTH * 2];

        for (int i = 0; i < TRAIN_DATA_LENGTH + TEST_DATA_LENGTH; i++)
        {
            // 犬・猫の画像読み込み
            Bitmap baseCatImage = new Bitmap("Data/train/cat." + i + ".jpg");
            Bitmap baseDogImage = new Bitmap("Data/train/dog." + i + ".jpg");
            // 変換後の画像を格納するBitmapを定義
            Bitmap catImage = new Bitmap(224, 224, PixelFormat.Format24bppRgb);
            Bitmap dogImage = new Bitmap(224, 224, PixelFormat.Format24bppRgb);
            // Graphicsオブジェクトに変換
            Graphics gCat = Graphics.FromImage(catImage);
            Graphics gDog = Graphics.FromImage(dogImage);
            // Graphicsオブジェクト(の中のcatImageに)baseImageを変換して描画
            gCat.DrawImage(baseCatImage, 0, 0, 224, 224);
            gDog.DrawImage(baseDogImage, 0, 0, 224, 224);
            // Graphicsオブジェクトを破棄し、メモリを解放
            gCat.Dispose();
            gDog.Dispose();

            // 訓練・テストデータにデータを格納
            // 先にテストデータの枚数分テストデータに保存し、その後訓練データを保存する
            // 画素値の値域は0 ~ 255のため、255で割ることで0 ~ 1に正規化
            if (i < TEST_DATA_LENGTH)
            {
                // ImageをNdArrayに変換したものをvggに入力し、出力した特徴量を入力データとして保存
                testData[i * 2]      = vgg.Predict(NdArrayConverter.Image2NdArray(catImage, false, true) / 255.0)[0];
                testLabel[i * 2]     = new NdArray(new Real[] { 0 });
                testData[i * 2 + 1]  = vgg.Predict(NdArrayConverter.Image2NdArray(dogImage, false, true) / 255.0)[0];
                testLabel[i * 2 + 1] = new NdArray(new Real[] { 1 });
            }
            else
            {
                trainData[(i - TEST_DATA_LENGTH) * 2]  = vgg.Predict(NdArrayConverter.Image2NdArray(catImage, false, true) / 255.0)[0];
                trainLabel[(i - TEST_DATA_LENGTH) * 2] = new NdArray(new Real[] { 0 }); //new Real [] { 0 };
                trainData[(i - TEST_DATA_LENGTH) * 2]  = vgg.Predict(NdArrayConverter.Image2NdArray(dogImage, false, true) / 255.0)[0];
                trainLabel[(i - TEST_DATA_LENGTH) * 2] = new NdArray(new Real[] { 1 }); // = new Real [] { 1 };
            }
        }

        Console.WriteLine("Training Start...");

        // ミニバッチ用のNdArrayを定義
        NdArray batchData  = new NdArray(new[] { 4096 }, BATCH_SIZE);
        NdArray batchLabel = new NdArray(new[] { 1 }, BATCH_SIZE);

        // 誤差関数を定義(今回は二値分類なので二乗誤差関数(MSE))
        LossFunction lossFunction = new MeanSquaredError();

        // エポックを回す
        for (int epoch = 0; epoch < 10; epoch++)
        {
            // 1エポックで訓練データ // バッチサイズ の回数分学習
            for (int step = 0; step < TRAIN_DATA_COUNT; step++)
            {
                // ミニバッチを用意
                for (int i = 0; i < BATCH_SIZE; i++)
                {
                    // 0 ~ 訓練データサイズ-1 の中からランダムで整数を取得
                    int index = Mother.Dice.Next(trainData.Length);
                    // trainData(NdArray[])を、batchData(NdArray)の形にコピー
                    Array.Copy(trainData[index].Data, 0, batchData.Data, i * batchData.Length, batchData.Length);
                    batchLabel.Data[i] = trainLabel[index].Data[0];
                }

                // 学習(順伝播、誤差の計算、逆伝播、更新)
                NdArray[] output = nn.Forward(batchData);
                Real      loss   = lossFunction.Evaluate(output, batchLabel);
                nn.Backward(output);
                nn.Update();
            }

            // 認識率(accuracy)の計算
            // テストデータの回数データを回す
            Real accuracy = 0;
            for (int i = 0; i < TEST_DATA_LENGTH * 2; i++)
            {
                NdArray[] output = nn.Predict(testData[i]);
                // 出力outputと正解の誤差が0.5以下(正解が0のときにoutput<0.5、正解が1のときにoutput>0.5)
                // の際に正確に認識したとする
                if (Math.Abs(output[0].Data[0] - trainLabel[i].Data[0]) < 0.5)
                {
                    accuracy += 1;
                }
                accuracy /= TEST_DATA_LENGTH * 2.0;
                Console.WriteLine("Epoch:" + epoch + "accuracy:" + accuracy);
            }
        }
    }
Example #14
0
        public static void Run()
        {
            //読み込みたいネットワークの構成を FunctionStack に書き連ね、各 Function のパラメータを合わせる
            //ここで必ず name を Chainer の変数名に合わせておくこと

            FunctionStack nn = new FunctionStack(
                new Convolution2D(1, 2, 3, name: "conv1", gpuEnable: true),//必要であればGPUフラグも忘れずに
                new ReLU(),
                new MaxPooling(2, 2),
                new Convolution2D(2, 2, 2, name: "conv2", gpuEnable: true),
                new ReLU(),
                new MaxPooling(2, 2),
                new Linear(8, 2, name: "fl3"),
                new ReLU(),
                new Linear(2, 2, name: "fl4")
                );

            /* Chainerでの宣言
             * class NN(chainer.Chain):
             *  def __init__(self):
             *      super(NN, self).__init__(
             *          conv1 = L.Convolution2D(1,2,3),
             *          conv2 = L.Convolution2D(2,2,2),
             *          fl3 = L.Linear(8,2),
             *          fl4 = L.Linear(2,2)
             *      )
             *
             *  def __call__(self, x):
             *      h_conv1 = F.relu(self.conv1(x))
             *      h_pool1 = F.max_pooling_2d(h_conv1, 2)
             *      h_conv2 = F.relu(self.conv2(h_pool1))
             *      h_pool2 = F.max_pooling_2d(h_conv2, 2)
             *      h_fc1 = F.relu(self.fl3(h_pool2))
             *      y = self.fl4(h_fc1)
             *      return y
             */


            //パラメータを読み込み
            ChainerModelDataLoader.ModelLoad(MODEL_FILE_PATH, nn);

            //あとは通常通り使用する
            nn.SetOptimizer(new SGD());

            //入力データ
            NdArray x = new NdArray(new Real[, , ] {
                {
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.9, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.9, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.8, 0.5, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.3, 0.3, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.4, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }
                }
            });

            //教師信号
            Real[] t = { 0.0, 1.0 };

            //訓練を実施
            Trainer.Train(nn, x, t, new MeanSquaredError(), false);

            //結果表示用に退避
            Convolution2D l2 = (Convolution2D)nn.Functions[0];


            //Updateを実行するとgradが消費されてしまうため値を先に出力
            Console.WriteLine("gw1");
            Console.WriteLine(l2.Weight.ToString("Grad"));

            Console.WriteLine("gb1");
            Console.WriteLine(l2.Bias.ToString("Grad"));

            //更新
            nn.Update();

            Console.WriteLine("w1");
            Console.WriteLine(l2.Weight);

            Console.WriteLine("b1");
            Console.WriteLine(l2.Bias);
        }
Example #15
0
        public static void Run()
        {
            // Prepare MNIST data
            RILogManager.Default?.SendDebug("MNIST Data Loading...");
            MnistData mnistData = new MnistData(28);

            RILogManager.Default?.SendDebug("Training Start...");

            // Write the network configuration in FunctionStack
            FunctionStack Layer1 = new FunctionStack("Test12 Layer 1",
                                                     new Linear(true, 28 * 28, 256, name: "l1 Linear"),
                                                     new BatchNormalization(true, 256, name: "l1 Norm"),
                                                     new ReLU(name: "l1 ReLU")
                                                     );

            FunctionStack Layer2 = new FunctionStack("Test12 Layer 2",
                                                     new Linear(true, 256, 256, name: "l2 Linear"),
                                                     new BatchNormalization(true, 256, name: "l2 Norm"),
                                                     new ReLU(name: "l2 ReLU")
                                                     );

            FunctionStack Layer3 = new FunctionStack("Test12 Layer 3",
                                                     new Linear(true, 256, 256, name: "l3 Linear"),
                                                     new BatchNormalization(true, 256, name: "l3 Norm"),
                                                     new ReLU(name: "l3 ReLU")
                                                     );

            FunctionStack Layer4 = new FunctionStack("Test12 Layer 4",
                                                     new Linear(true, 256, 10, name: "l4 Linear")
                                                     );

            // Function stack itself is also stacked as Function
            FunctionStack nn = new FunctionStack
                                   ("Test12",
                                   Layer1,
                                   Layer2,
                                   Layer3,
                                   Layer4
                                   );

            FunctionStack cDNI1 = new FunctionStack("Test12 DNI 1",
                                                    new Linear(true, 256 + 10, 1024, name: "cDNI1 Linear1"),
                                                    new BatchNormalization(true, 1024, name: "cDNI1 Norm1"),
                                                    new ReLU(name: "cDNI1 ReLU1"),
                                                    new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                                                    );

            FunctionStack cDNI2 = new FunctionStack("Test12 DNI 2",
                                                    new Linear(true, 256 + 10, 1024, name: "cDNI2 Linear1"),
                                                    new BatchNormalization(true, 1024, name: "cDNI2 Norm1"),
                                                    new ReLU(name: "cDNI2 ReLU1"),
                                                    new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "cDNI2 Linear3")
                                                    );

            FunctionStack cDNI3 = new FunctionStack("Test12 DNI 3",
                                                    new Linear(true, 256 + 10, 1024, name: "cDNI3 Linear1"),
                                                    new BatchNormalization(true, 1024, name: "cDNI3 Norm1"),
                                                    new ReLU(name: "cDNI3 ReLU1"),
                                                    new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "cDNI3 Linear3")
                                                    );

            Layer1.SetOptimizer(new Adam("Adam", 0.00003f));
            Layer2.SetOptimizer(new Adam("Adam", 0.00003f));
            Layer3.SetOptimizer(new Adam("Adam", 0.00003f));
            Layer4.SetOptimizer(new Adam("Adam", 0.00003f));

            cDNI1.SetOptimizer(new Adam("Adam", 0.00003f));
            cDNI2.SetOptimizer(new Adam("Adam", 0.00003f));
            cDNI3.SetOptimizer(new Adam("Adam", 0.00003f));

            // Describe each function stack;
            RILogManager.Default?.SendDebug(Layer1.Describe());
            RILogManager.Default?.SendDebug(Layer2.Describe());
            RILogManager.Default?.SendDebug(Layer3.Describe());
            RILogManager.Default?.SendDebug(Layer4.Describe());

            RILogManager.Default?.SendDebug(cDNI1.Describe());
            RILogManager.Default?.SendDebug(cDNI2.Describe());
            RILogManager.Default?.SendDebug(cDNI3.Describe());

            for (int epoch = 0; epoch < 10; epoch++)
            {
                // Total error in the whole
                Real totalLoss      = 0;
                Real cDNI1totalLoss = 0;
                Real cDNI2totalLoss = 0;
                Real cDNI3totalLoss = 0;

                long totalLossCount      = 0;
                long cDNI1totalLossCount = 0;
                long cDNI2totalLossCount = 0;
                long cDNI3totalLossCount = 0;


                // how many times to run the batch
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    RILogManager.Default?.SendDebug("epoch: " + (epoch + 1) + " of 10, batch iteration: " + i + " of " + TRAIN_DATA_COUNT);
                    RILogManager.Default?.ViewerSendWatch("Epoch", epoch + 1);
                    RILogManager.Default?.ViewerSendWatch("Batch Iteration", i);

                    // Get data randomly from the training data
                    TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT, 28, 28);

                    // Run first tier
                    NdArray[]     layer1ForwardResult = Layer1.Forward(true, datasetX.Data);
                    ResultDataSet layer1ResultDataSet = new ResultDataSet(layer1ForwardResult, datasetX.Label);

                    // Obtain the slope of the first layer
                    NdArray[] cDNI1Result = cDNI1.Forward(true, layer1ResultDataSet.GetTrainData());

                    // Apply the slope of the first layer
                    layer1ForwardResult[0].Grad = cDNI1Result[0].Data.ToArray();

                    //Update first layer
                    Layer1.Backward(true, layer1ForwardResult);
                    layer1ForwardResult[0].ParentFunc = null;
                    Layer1.Update();

                    // Run Layer 2
                    NdArray[]     layer2ForwardResult = Layer2.Forward(true, layer1ResultDataSet.Result);
                    ResultDataSet layer2ResultDataSet = new ResultDataSet(layer2ForwardResult, layer1ResultDataSet.Label);

                    // Get the inclination of the second layer
                    NdArray[] cDNI2Result = cDNI2.Forward(true, layer2ResultDataSet.GetTrainData());

                    // Apply the slope of the second layer
                    layer2ForwardResult[0].Grad = cDNI2Result[0].Data.ToArray();

                    //Update layer 2
                    Layer2.Backward(true, layer2ForwardResult);
                    layer2ForwardResult[0].ParentFunc = null;


                    //Perform learning of first layer cDNI
                    Real cDNI1loss = new MeanSquaredError().Evaluate(cDNI1Result, new NdArray(layer1ResultDataSet.Result[0].Grad, cDNI1Result[0].Shape, cDNI1Result[0].BatchCount));

                    Layer2.Update();

                    cDNI1.Backward(true, cDNI1Result);
                    cDNI1.Update();

                    cDNI1totalLoss += cDNI1loss;
                    cDNI1totalLossCount++;

                    //Run Third Tier
                    NdArray[]     layer3ForwardResult = Layer3.Forward(true, layer2ResultDataSet.Result);
                    ResultDataSet layer3ResultDataSet = new ResultDataSet(layer3ForwardResult, layer2ResultDataSet.Label);

                    //Get the inclination of the third layer
                    NdArray[] cDNI3Result = cDNI3.Forward(true, layer3ResultDataSet.GetTrainData());

                    //Apply the inclination of the third layer
                    layer3ForwardResult[0].Grad = cDNI3Result[0].Data.ToArray();

                    //Update third layer
                    Layer3.Backward(true, layer3ForwardResult);
                    layer3ForwardResult[0].ParentFunc = null;

                    //Perform learning of cDNI for layer 2
                    Real cDNI2loss = new MeanSquaredError().Evaluate(cDNI2Result, new NdArray(layer2ResultDataSet.Result[0].Grad, cDNI2Result[0].Shape, cDNI2Result[0].BatchCount));

                    Layer3.Update();

                    cDNI2.Backward(true, cDNI2Result);
                    cDNI2.Update();

                    cDNI2totalLoss += cDNI2loss;
                    cDNI2totalLossCount++;

                    NdArray[] layer4ForwardResult = Layer4.Forward(true, layer3ResultDataSet.Result);
                    Real      sumLoss             = new SoftmaxCrossEntropy().Evaluate(layer4ForwardResult, layer3ResultDataSet.Label);
                    Layer4.Backward(true, layer4ForwardResult);
                    layer4ForwardResult[0].ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    Real cDNI3loss = new MeanSquaredError().Evaluate(cDNI3Result, new NdArray(layer3ResultDataSet.Result[0].Grad, cDNI3Result[0].Shape, cDNI3Result[0].BatchCount));

                    Layer4.Update();

                    cDNI3.Backward(true, cDNI3Result);
                    cDNI3.Update();

                    cDNI3totalLoss += cDNI3loss;
                    cDNI3totalLossCount++;

                    RILogManager.Default?.SendDebug("\nbatch count " + i + "/" + TRAIN_DATA_COUNT);
                    RILogManager.Default?.SendDebug("total loss " + totalLoss / totalLossCount);
                    RILogManager.Default?.SendDebug("local loss " + sumLoss);

                    RILogManager.Default?.SendDebug("\ncDNI1 total loss " + cDNI1totalLoss / cDNI1totalLossCount);
                    RILogManager.Default?.SendDebug("cDNI2 total loss " + cDNI2totalLoss / cDNI2totalLossCount);
                    RILogManager.Default?.SendDebug("cDNI3 total loss " + cDNI3totalLoss / cDNI3totalLossCount);

                    RILogManager.Default?.SendDebug("\ncDNI1 local loss " + cDNI1loss);
                    RILogManager.Default?.SendDebug("cDNI2 local loss " + cDNI2loss);
                    RILogManager.Default?.SendDebug("cDNI3 local loss " + cDNI3loss);

                    if (i % 20 == 0)
                    {
                        RILogManager.Default?.SendDebug("\nTesting...");
                        TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT, 28);
                        Real        accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        RILogManager.Default?.SendDebug("accuracy " + accuracy);
                    }
                }
            }
        }
Example #16
0
        public static void Run()
        {
            // Describe each initial value
            Real[,,,] initial_W1 =
            {
                { { { 1.0,  0.5, 0.0 }, {  0.5, 0.0, -0.5 }, { 0.0, -0.5, -1.0 } } },
                { { { 0.0, -0.1, 0.1 }, { -0.3, 0.4,  0.7 }, { 0.5, -0.2,  0.2 } } }
            };
            Real[] initial_b1 = { 0.5, 1.0 };

            Real[,,,] initial_W2 =
            {
                { { { -0.1,  0.6 }, { 0.3, -0.9 } }, { {  0.7, 0.9 }, { -0.2, -0.3 } } },
                { { { -0.6, -0.1 }, { 0.3,  0.3 } }, { { -0.5, 0.8 }, {  0.9,  0.1 } } }
            };
            Real[] initial_b2 = { 0.1, 0.9 };

            Real[,] initial_W3 =
            {
                { 0.5, 0.3, 0.4, 0.2, 0.6, 0.1, 0.4, 0.3 },
                { 0.6, 0.4, 0.9, 0.1, 0.5, 0.2, 0.3, 0.4 }
            };
            Real[] initial_b3 = { 0.01, 0.02 };

            Real[,] initial_W4 = { { 0.8, 0.2 }, { 0.4, 0.6 } };
            Real[] initial_b4 = { 0.02, 0.01 };


            //Input data
            NdArray x = new NdArray(new Real[, , ] {
                {
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.9, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.9, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.8, 0.5, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.3, 0.3, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.4, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }
                }
            });

            //teacher signal
            Real[] t = { 0.0, 1.0 };


            // If you want to check the contents of a layer, have an instance as a single layer
            Convolution2D l2 = new Convolution2D(true, 1, 2, 3, initialW: initial_W1, initialb: initial_b1, name: "l2 Conv2D");

            // Write the network configuration in FunctionStack
            FunctionStack nn = new FunctionStack("Test5",
                                                 l2, //new Convolution2D(1, 2, 3, initialW: initial_W1, initialb: initial_b1),
                                                 new ReLU(name: "l2 ReLU"),
                                                     //new AveragePooling(2, 2, name: "l2 AVGPooling"),
                                                 new MaxPooling(2, 2, name: "l2 MaxPooling"),
                                                 new Convolution2D(true, 2, 2, 2, initialW: initial_W2, initialb: initial_b2, name: "l3 Conv2D"),
                                                 new ReLU(name: "l3 ReLU"),
                                                 //new AveragePooling(2, 2, name: "l3 AVGPooling"),
                                                 new MaxPooling(2, 2, name: "l3 MaxPooling"),
                                                 new Linear(true, 8, 2, initialW: initial_W3, initialb: initial_b3, name: "l4 Linear"),
                                                 new ReLU(name: "l4 ReLU"),
                                                 new Linear(true, 2, 2, initialW: initial_W4, initialb: initial_b4, name: "l5 Linear")
                                                 );

            // If you omit the optimizer declaration, the default SGD(0.1) will be used
            // nn.SetOptimizer(new SGD());

            // Training conducted
            Trainer.Train(nn, x, t, new MeanSquaredError(), false);

            // If Update is executed, grad is consumed, so output the value first
            RILogManager.Default?.SendDebug("gw1");
            RILogManager.Default?.SendDebug(l2.Weight.ToString("Grad"));

            RILogManager.Default?.SendDebug("gb1");
            RILogManager.Default?.SendDebug(l2.Bias.ToString("Grad"));

            //update
            nn.Update();

            RILogManager.Default?.SendDebug("w1");
            RILogManager.Default?.SendDebug(l2.Weight.ToString());

            RILogManager.Default?.SendDebug("b1");
            RILogManager.Default?.SendDebug(l2.Bias.ToString());
        }
Example #17
0
        public static void Run()
        {
            _outputStream = File.Create(LogPath);

            _logWriter = new HistogramLogWriter(_outputStream);
            _logWriter.Write(DateTime.Now);

            var recorder = HistogramFactory
                           .With64BitBucketSize()
                           ?.WithValuesFrom(1)
                           ?.WithValuesUpTo(2345678912345)
                           ?.WithPrecisionOf(3)
                           ?.WithThreadSafeWrites()
                           ?.WithThreadSafeReads()
                           ?.Create();

            var accumulatingHistogram = new LongHistogram(2345678912345, 3);

            var size = accumulatingHistogram.GetEstimatedFootprintInBytes();

            RILogManager.Default?.SendDebug("Histogram size = {0} bytes ({1:F2} MB)", size, size / 1024.0 / 1024.0);


            RILogManager.Default?.SendDebug("Recorded latencies [in system clock ticks]");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.None, useCsvFormat: true);
            Console.WriteLine();

            RILogManager.Default?.SendDebug("Recorded latencies [in usec]");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToMicroseconds, useCsvFormat: true);
            Console.WriteLine();

            RILogManager.Default?.SendDebug("Recorded latencies [in msec]");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToMilliseconds, useCsvFormat: true);
            Console.WriteLine();

            RILogManager.Default?.SendDebug("Recorded latencies [in sec]");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToSeconds, useCsvFormat: true);

            DocumentResults(accumulatingHistogram, recorder);

            RILogManager.Default?.SendDebug("Build Vocabulary.");

            DocumentResults(accumulatingHistogram, recorder);

            Vocabulary vocabulary = new Vocabulary();

            DocumentResults(accumulatingHistogram, recorder);

            string trainPath = InternetFileDownloader.Download(DOWNLOAD_URL + TRAIN_FILE, TRAIN_FILE);

            DocumentResults(accumulatingHistogram, recorder);

            string validPath = InternetFileDownloader.Download(DOWNLOAD_URL + VALID_FILE, VALID_FILE);

            DocumentResults(accumulatingHistogram, recorder);

            string testPath = InternetFileDownloader.Download(DOWNLOAD_URL + TEST_FILE, TEST_FILE);

            DocumentResults(accumulatingHistogram, recorder);


            int[] trainData = vocabulary.LoadData(trainPath);
            DocumentResults(accumulatingHistogram, recorder);

            int[] validData = vocabulary.LoadData(validPath);
            DocumentResults(accumulatingHistogram, recorder);

            int[] testData = vocabulary.LoadData(testPath);
            DocumentResults(accumulatingHistogram, recorder);

            int nVocab = vocabulary.Length;

            RILogManager.Default?.SendDebug("Network Initializing.");
            FunctionStack model = new FunctionStack("Test10",
                                                    new EmbedID(nVocab, N_UNITS, name: "l1 EmbedID"),
                                                    new Dropout(),
                                                    new LSTM(true, N_UNITS, N_UNITS, name: "l2 LSTM"),
                                                    new Dropout(),
                                                    new LSTM(true, N_UNITS, N_UNITS, name: "l3 LSTM"),
                                                    new Dropout(),
                                                    new Linear(true, N_UNITS, nVocab, name: "l4 Linear")
                                                    );

            DocumentResults(accumulatingHistogram, recorder);

            // Do not cease at the given threshold, correct the rate by taking the rate from L2Norm of all parameters
            GradientClipping gradientClipping = new GradientClipping(threshold: GRAD_CLIP);
            SGD sgd = new SGD(learningRate: 1);

            model.SetOptimizer(gradientClipping, sgd);
            DocumentResults(accumulatingHistogram, recorder);

            Real wholeLen = trainData.Length;
            int  jump     = (int)Math.Floor(wholeLen / BATCH_SIZE);
            int  epoch    = 0;

            Stack <NdArray[]> backNdArrays = new Stack <NdArray[]>();

            RILogManager.Default?.SendDebug("Train Start.");
            double  dVal;
            NdArray x = new NdArray(new[] { 1 }, BATCH_SIZE, (Function)null);
            NdArray t = new NdArray(new[] { 1 }, BATCH_SIZE, (Function)null);

            for (int i = 0; i < jump * N_EPOCH; i++)
            {
                for (int j = 0; j < BATCH_SIZE; j++)
                {
                    x.Data[j] = trainData[(int)((jump * j + i) % wholeLen)];
                    t.Data[j] = trainData[(int)((jump * j + i + 1) % wholeLen)];
                }

                NdArray[] result  = model.Forward(true, x);
                Real      sumLoss = new SoftmaxCrossEntropy().Evaluate(result, t);
                backNdArrays.Push(result);
                RILogManager.Default?.SendDebug("[{0}/{1}] Loss: {2}", i + 1, jump, sumLoss);

                //Run truncated BPTT
                if ((i + 1) % BPROP_LEN == 0)
                {
                    for (int j = 0; backNdArrays.Count > 0; j++)
                    {
                        RILogManager.Default?.SendDebug("backward" + backNdArrays.Count);
                        model.Backward(true, backNdArrays.Pop());
                    }

                    model.Update();
                    model.ResetState();
                }

                if ((i + 1) % jump == 0)
                {
                    epoch++;
                    RILogManager.Default?.SendDebug("evaluate");
                    dVal = Evaluate(model, validData);
                    RILogManager.Default?.SendDebug($"validation perplexity: {dVal}");

                    if (epoch >= 6)
                    {
                        sgd.LearningRate /= 1.2;
                        RILogManager.Default?.SendDebug("learning rate =" + sgd.LearningRate);
                    }
                }
                DocumentResults(accumulatingHistogram, recorder);
            }

            RILogManager.Default?.SendDebug("test start");
            dVal = Evaluate(model, testData);
            RILogManager.Default?.SendDebug("test perplexity:" + dVal);
            DocumentResults(accumulatingHistogram, recorder);

            _logWriter.Dispose();
            _outputStream.Dispose();


            RILogManager.Default?.SendDebug("Log contents");
            RILogManager.Default?.SendDebug(File.ReadAllText(LogPath));
            Console.WriteLine();
            RILogManager.Default?.SendDebug("Percentile distribution (values reported in milliseconds)");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToMilliseconds, useCsvFormat: true);

            RILogManager.Default?.SendDebug("Mean: " + BytesToString(accumulatingHistogram.GetMean()) + ", StdDev: " +
                                            BytesToString(accumulatingHistogram.GetStdDeviation()));
        }
Example #18
0
        public static void Run()
        {
            Console.WriteLine("Build Vocabulary.");

            Vocabulary vocabulary = new Vocabulary();

            string trainPath = InternetFileDownloader.Donwload(DOWNLOAD_URL + TRAIN_FILE, TRAIN_FILE);
            string validPath = InternetFileDownloader.Donwload(DOWNLOAD_URL + VALID_FILE, VALID_FILE);
            string testPath  = InternetFileDownloader.Donwload(DOWNLOAD_URL + TEST_FILE, TEST_FILE);

            int[] trainData = vocabulary.LoadData(trainPath);
            int[] validData = vocabulary.LoadData(validPath);
            int[] testData  = vocabulary.LoadData(testPath);

            int nVocab = vocabulary.Length;

            Console.WriteLine("Network Initilizing.");
            FunctionStack model = new FunctionStack(
                new EmbedID(nVocab, N_UNITS, name: "l1 EmbedID"),
                new Dropout(),
                new LSTM(N_UNITS, N_UNITS, name: "l2 LSTM"),
                new Dropout(),
                new LSTM(N_UNITS, N_UNITS, name: "l3 LSTM"),
                new Dropout(),
                new Linear(N_UNITS, nVocab, name: "l4 Linear")
                );

            //与えられたthresholdで頭打ちではなく、全パラメータのL2Normからレートを取り補正を行う
            GradientClipping gradientClipping = new GradientClipping(threshold: GRAD_CLIP);
            SGD sgd = new SGD(learningRate: 1);

            model.SetOptimizer(gradientClipping, sgd);

            Real wholeLen = trainData.Length;
            int  jump     = (int)Math.Floor(wholeLen / BATCH_SIZE);
            int  epoch    = 0;

            Stack <NdArray[]> backNdArrays = new Stack <NdArray[]>();

            Console.WriteLine("Train Start.");

            for (int i = 0; i < jump * N_EPOCH; i++)
            {
                NdArray x = new NdArray(new[] { 1 }, BATCH_SIZE);
                NdArray t = new NdArray(new[] { 1 }, BATCH_SIZE);

                for (int j = 0; j < BATCH_SIZE; j++)
                {
                    x.Data[j] = trainData[(int)((jump * j + i) % wholeLen)];
                    t.Data[j] = trainData[(int)((jump * j + i + 1) % wholeLen)];
                }

                NdArray[] result  = model.Forward(x);
                Real      sumLoss = new SoftmaxCrossEntropy().Evaluate(result, t);
                backNdArrays.Push(result);
                Console.WriteLine("[{0}/{1}] Loss: {2}", i + 1, jump, sumLoss);

                //Run truncated BPTT
                if ((i + 1) % BPROP_LEN == 0)
                {
                    for (int j = 0; backNdArrays.Count > 0; j++)
                    {
                        Console.WriteLine("backward" + backNdArrays.Count);
                        model.Backward(backNdArrays.Pop());
                    }

                    model.Update();
                    model.ResetState();
                }

                if ((i + 1) % jump == 0)
                {
                    epoch++;
                    Console.WriteLine("evaluate");
                    Console.WriteLine("validation perplexity: {0}", Evaluate(model, validData));

                    if (epoch >= 6)
                    {
                        sgd.LearningRate /= 1.2;
                        Console.WriteLine("learning rate =" + sgd.LearningRate);
                    }
                }
            }

            Console.WriteLine("test start");
            Console.WriteLine("test perplexity:" + Evaluate(model, testData));
        }
Example #19
0
        public static void Run()
        {
            //Write the configuration of the network you want to read into FunctionStack and adjust the parameters of each function
            //Make sure to match name to the variable name of Chainer

            FunctionStack nn = new FunctionStack(
                new Convolution2D(1, 2, 3, name: "conv1", gpuEnable: true),//Do not forget the GPU flag if necessary
                new ReLU(),
                new MaxPooling(2, 2),
                new Convolution2D(2, 2, 2, name: "conv2", gpuEnable: true),
                new ReLU(),
                new MaxPooling(2, 2),
                new Linear(8, 2, name: "fl3"),
                new ReLU(),
                new Linear(2, 2, name: "fl4")
                );

            /* Declaration in Chainer
             *               class NN (chainer.Chain):
             *                   def __init __ (self):
             *                       super (NN, self).__ init __ (
             *                           conv 1 = L. Convolution 2 D (1, 2, 3),
             *                           conv 2 = L. Convolution 2 D (2, 2, 2),
             *                           fl3 = L. Linear (8, 2),
             *                           fl4 = L. Linear (2, 2)
             *                       )
             *
             *                   def __call __ (self, x):
             *                       h_conv 1 = F.relu (self.conv 1 (x))
             *                       h_pool 1 = F.max_pooling - 2 d (h_conv 1, 2)
             *                       h_conv 2 = F.relu (self.conv 2 (h_pool 1))
             *                       h_pool 2 = F.max_pooling - 2 d (h_conv 2, 2)
             *                       h_fc1 = F.relu (self.fl3 (h_pool2))
             *                       y = self.fl 4 (h_fc 1)
             *                       return y
             *               */


            //Read parameters
            ChainerModelDataLoader.ModelLoad(MODEL_FILE_PATH, nn);

            //Use it as usual
            nn.SetOptimizer(new SGD());

            //Input data
            NdArray x = new NdArray(new Real[, , ] {
                {
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.9, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.9, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.8, 0.5, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.3, 0.3, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.4, 0.1, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0 },
                    { 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }
                }
            });

            //Teacher signal
            Real[] t = { 0.0, 1.0 };

            //Training conducted
            Trainer.Train(nn, x, t, new MeanSquaredError(), false);

            //Evacuate for results display
            Convolution2D l2 = (Convolution2D)nn.Functions[0];


            //When updating is executed grad will be consumed, so output the value first
            Console.WriteLine("gw1");
            Console.WriteLine(l2.Weight.ToString("Grad"));

            Console.WriteLine("gb1");
            Console.WriteLine(l2.Bias.ToString("Grad"));

            //update
            nn.Update();

            Console.WriteLine("w1");
            Console.WriteLine(l2.Weight);

            Console.WriteLine("b1");
            Console.WriteLine(l2.Bias);
        }
Example #20
0
        public static void Run()
        {
            Console.WriteLine("Build Vocabulary.");

            Vocabulary vocabulary = new Vocabulary();
            string     trainPath  = InternetFileDownloader.Donwload(DOWNLOAD_URL + TRAIN_FILE, TRAIN_FILE, TRAIN_FILE_HASH);
            string     testPath   = InternetFileDownloader.Donwload(DOWNLOAD_URL + TEST_FILE, TEST_FILE, TEST_FILE_HASH);

            int[] trainData = vocabulary.LoadData(trainPath);
            int[] testData  = vocabulary.LoadData(testPath);

            int nVocab = vocabulary.Length;

            Console.WriteLine("Done.");

            Console.WriteLine("Network Initilizing.");
            FunctionStack model = new FunctionStack(
                new EmbedID(nVocab, N_UNITS, name: "l1 EmbedID"),
                new Linear(N_UNITS, N_UNITS, name: "l2 Linear"),
                new TanhActivation("l2 Tanh"),
                new Linear(N_UNITS, nVocab, name: "l3 Linear"),
                new Softmax("l3 Sonftmax")
                );

            model.SetOptimizer(new Adam());

            List <int> s = new List <int>();

            Console.WriteLine("Train Start.");
            SoftmaxCrossEntropy softmaxCrossEntropy = new SoftmaxCrossEntropy();

            for (int epoch = 0; epoch < TRAINING_EPOCHS; epoch++)
            {
                for (int pos = 0; pos < trainData.Length; pos++)
                {
                    NdArray h = new NdArray(new Real[N_UNITS]);

                    int id = trainData[pos];
                    s.Add(id);

                    if (id == vocabulary.EosID)
                    {
                        Real            accumloss = 0;
                        Stack <NdArray> tmp       = new Stack <NdArray>();

                        for (int i = 0; i < s.Count; i++)
                        {
                            int tx = i == s.Count - 1 ? vocabulary.EosID : s[i + 1];

                            //l1 EmbedID
                            NdArray l1 = model.Functions[0].Forward(s[i])[0];

                            //l2 Linear
                            NdArray l2 = model.Functions[1].Forward(h)[0];

                            //Add
                            NdArray xK = l1 + l2;

                            //l2 Tanh
                            h = model.Functions[2].Forward(xK)[0];

                            //l3 Linear
                            NdArray h2 = model.Functions[3].Forward(h)[0];

                            Real loss = softmaxCrossEntropy.Evaluate(h2, tx);
                            tmp.Push(h2);
                            accumloss += loss;
                        }

                        Console.WriteLine(accumloss);

                        for (int i = 0; i < s.Count; i++)
                        {
                            model.Backward(tmp.Pop());
                        }

                        model.Update();
                        s.Clear();
                    }

                    if (pos % 100 == 0)
                    {
                        Console.WriteLine(pos + "/" + trainData.Length + " finished");
                    }
                }
            }

            Console.WriteLine("Test Start.");

            Real       sum     = 0;
            int        wnum    = 0;
            List <int> ts      = new List <int>();
            bool       unkWord = false;

            for (int pos = 0; pos < 1000; pos++)
            {
                int id = testData[pos];
                ts.Add(id);

                if (id > trainData.Length)
                {
                    unkWord = true;
                }

                if (id == vocabulary.EosID)
                {
                    if (!unkWord)
                    {
                        Console.WriteLine("pos" + pos);
                        Console.WriteLine("tsLen" + ts.Count);
                        Console.WriteLine("sum" + sum);
                        Console.WriteLine("wnum" + wnum);

                        sum  += CalPs(model, ts);
                        wnum += ts.Count - 1;
                    }
                    else
                    {
                        unkWord = false;
                    }

                    ts.Clear();
                }
            }

            Console.WriteLine(Math.Pow(2.0, sum / wnum));
        }
Example #21
0
        public static void Run()
        {
            // Prepare MNIST data
            RILogManager.Default?.SendDebug("MNIST Data Loading...");
            MnistData mnistData = new MnistData(28);

            RILogManager.Default?.SendDebug("Training Start...");

            // Write the network configuration in FunctionStack
            FunctionStack Layer1 = new FunctionStack("Test11 Layer 1",
                                                     new Linear(true, 28 * 28, 256, name: "l1 Linear"),
                                                     new BatchNormalization(true, 256, name: "l1 Norm"),
                                                     new ReLU(name: "l1 ReLU")
                                                     );

            FunctionStack Layer2 = new FunctionStack("Test11 Layer 2",
                                                     new Linear(true, 256, 256, name: "l2 Linear"),
                                                     new BatchNormalization(true, 256, name: "l2 Norm"),
                                                     new ReLU(name: "l2 ReLU")
                                                     );

            FunctionStack Layer3 = new FunctionStack("Test11 Layer 3",
                                                     new Linear(true, 256, 256, name: "l3 Linear"),
                                                     new BatchNormalization(true, 256, name: "l3 Norm"),
                                                     new ReLU(name: "l3 ReLU")
                                                     );

            FunctionStack Layer4 = new FunctionStack("Test11 Layer 4",
                                                     new Linear(true, 256, 10, name: "l4 Linear")
                                                     );

            // Function stack itself is also stacked as Function
            FunctionStack nn = new FunctionStack
                                   ("Test11",
                                   Layer1,
                                   Layer2,
                                   Layer3,
                                   Layer4
                                   );

            FunctionStack DNI1 = new FunctionStack("Test11 DNI1",
                                                   new Linear(true, 256, 1024, name: "DNI1 Linear1"),
                                                   new BatchNormalization(true, 1024, name: "DNI1 Norm1"),
                                                   new ReLU(name: "DNI1 ReLU1"),
                                                   new Linear(true, 1024, 1024, name: "DNI1 Linear2"),
                                                   new BatchNormalization(true, 1024, name: "DNI1 Norm2"),
                                                   new ReLU(name: "DNI1 ReLU2"),
                                                   new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                                                   );

            FunctionStack DNI2 = new FunctionStack("Test11 DNI2",
                                                   new Linear(true, 256, 1024, name: "DNI2 Linear1"),
                                                   new BatchNormalization(true, 1024, name: "DNI2 Norm1"),
                                                   new ReLU(name: "DNI2 ReLU1"),
                                                   new Linear(true, 1024, 1024, name: "DNI2 Linear2"),
                                                   new BatchNormalization(true, 1024, name: "DNI2 Norm2"),
                                                   new ReLU(name: "DNI2 ReLU2"),
                                                   new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "DNI2 Linear3")
                                                   );

            FunctionStack DNI3 = new FunctionStack("Test11 DNI3",
                                                   new Linear(true, 256, 1024, name: "DNI3 Linear1"),
                                                   new BatchNormalization(true, 1024, name: "DNI3 Norm1"),
                                                   new ReLU(name: "DNI3 ReLU1"),
                                                   new Linear(true, 1024, 1024, name: "DNI3 Linear2"),
                                                   new BatchNormalization(true, 1024, name: "DNI3 Norm2"),
                                                   new ReLU(name: "DNI3 ReLU2"),
                                                   new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "DNI3 Linear3")
                                                   );

            //optimizer
            Layer1.SetOptimizer(new Adam());
            Layer2.SetOptimizer(new Adam());
            Layer3.SetOptimizer(new Adam());
            Layer4.SetOptimizer(new Adam());
            DNI1.SetOptimizer(new Adam());
            DNI2.SetOptimizer(new Adam());
            DNI3.SetOptimizer(new Adam());

            // Three generations learning
            for (int epoch = 0; epoch < 20; epoch++)
            {
                RILogManager.Default?.SendDebug("epoch " + (epoch + 1));

                Real totalLoss     = 0;
                Real DNI1totalLoss = 0;
                Real DNI2totalLoss = 0;
                Real DNI3totalLoss = 0;

                long totalLossCount     = 0;
                long DNI1totalLossCount = 0;
                long DNI2totalLossCount = 0;
                long DNI3totalLossCount = 0;

                // how many times to run the batch
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    // Get data randomly from the training data
                    TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT, 28, 28);

                    // Run first tier
                    NdArray[] layer1ForwardResult = Layer1.Forward(true, datasetX.Data);

                    // Obtain the slope of the first layer
                    NdArray[] DNI1Result = DNI1.Forward(true, layer1ForwardResult);

                    // Apply the slope of the first layer
                    layer1ForwardResult[0].Grad = DNI1Result[0].Data.ToArray();

                    // Update first layer
                    Layer1.Backward(true, layer1ForwardResult);
                    layer1ForwardResult[0].ParentFunc = null; // Backward was executed and cut off calculation graph
                    Layer1.Update();

                    // Run Layer 2
                    NdArray[] layer2ForwardResult = Layer2.Forward(true, layer1ForwardResult);

                    // Get the inclination of the second layer
                    NdArray[] DNI2Result = DNI2.Forward(true, layer2ForwardResult);

                    // Apply the slope of the second layer
                    layer2ForwardResult[0].Grad = DNI2Result[0].Data.ToArray();

                    // Update layer 2
                    Layer2.Backward(true, layer2ForwardResult);
                    layer2ForwardResult[0].ParentFunc = null;

                    // Learn DNI for first tier
                    Real DNI1loss = new MeanSquaredError().Evaluate(DNI1Result, new NdArray(layer1ForwardResult[0].Grad, DNI1Result[0].Shape, DNI1Result[0].BatchCount));

                    Layer2.Update();

                    DNI1.Backward(true, DNI1Result);
                    DNI1.Update();

                    DNI1totalLoss += DNI1loss;
                    DNI1totalLossCount++;

                    // run layer 3
                    NdArray[] layer3ForwardResult = Layer3.Forward(true, layer2ForwardResult);

                    // Get the inclination of the third layer
                    NdArray[] DNI3Result = DNI3.Forward(true, layer3ForwardResult);

                    // Apply the slope of the third layer
                    layer3ForwardResult[0].Grad = DNI3Result[0].Data.ToArray();

                    // Update layer 3
                    Layer3.Backward(true, layer3ForwardResult);
                    layer3ForwardResult[0].ParentFunc = null;

                    // Run DNI learning for layer 2
                    Real DNI2loss = new MeanSquaredError().Evaluate(DNI2Result, new NdArray(layer2ForwardResult[0].Grad, DNI2Result[0].Shape, DNI2Result[0].BatchCount));

                    Layer3.Update();

                    DNI2.Backward(true, DNI2Result);
                    DNI2.Update();

                    DNI2totalLoss += DNI2loss;
                    DNI2totalLossCount++;

                    // run layer 4
                    NdArray[] layer4ForwardResult = Layer4.Forward(true, layer3ForwardResult);

                    // Obtain the slope of the fourth layer
                    Real sumLoss = new SoftmaxCrossEntropy().Evaluate(layer4ForwardResult, datasetX.Label);

                    // Update fourth layer
                    Layer4.Backward(true, layer4ForwardResult);
                    layer4ForwardResult[0].ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    // Run DNI learning for layer 3
                    Real DNI3loss = new MeanSquaredError().Evaluate(DNI3Result, new NdArray(layer3ForwardResult[0].Grad, DNI3Result[0].Shape, DNI3Result[0].BatchCount));

                    Layer4.Update();

                    DNI3.Backward(true, DNI3Result);
                    DNI3.Update();

                    DNI3totalLoss += DNI3loss;
                    DNI3totalLossCount++;

                    RILogManager.Default?.SendDebug("batch count " + i + "/" + TRAIN_DATA_COUNT);
                    RILogManager.Default?.SendDebug("total loss " + totalLoss / totalLossCount);
                    RILogManager.Default?.SendDebug("local loss " + sumLoss);

                    RILogManager.Default?.SendDebug("DNI1 total loss " + DNI1totalLoss / DNI1totalLossCount);
                    RILogManager.Default?.SendDebug("DNI2 total loss " + DNI2totalLoss / DNI2totalLossCount);
                    RILogManager.Default?.SendDebug("DNI3 total loss " + DNI3totalLoss / DNI3totalLossCount);

                    RILogManager.Default?.SendDebug("DNI1 local loss " + DNI1loss);
                    RILogManager.Default?.SendDebug("DNI2 local loss " + DNI2loss);
                    RILogManager.Default?.SendDebug("DNI3 local loss " + DNI3loss);

                    // Test the accuracy if you move the batch 20 times
                    if (i % 20 == 0)
                    {
                        RILogManager.Default?.SendDebug("Testing...");

                        // Get data randomly from test data
                        TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT, 28);

                        // Run test
                        Real accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        RILogManager.Default?.SendDebug("accuracy " + accuracy);
                    }
                }
            }
        }