Example #1
0
        static Real Evaluate(FunctionStack <Real> model, int[] dataset)
        {
            FunctionStack <Real> predictModel = DeepCopyHelper <Real> .DeepCopy(model);

            predictModel.ResetState();

            Real totalLoss      = 0;
            long totalLossCount = 0;

            for (int i = 0; i < dataset.Length - 1; i++)
            {
                NdArray <Real> x = new NdArray <Real>(new[] { 1 }, BATCH_SIZE);
                NdArray <int>  t = new NdArray <int>(new[] { 1 }, BATCH_SIZE);

                for (int j = 0; j < BATCH_SIZE; j++)
                {
                    x.Data[j] = dataset[j + i];
                    t.Data[j] = dataset[j + i + 1];
                }

                NdArray <Real> result  = predictModel.Forward(x)[0];
                Real           sumLoss = new SoftmaxCrossEntropy <Real>().Evaluate(result, t);
                totalLoss += sumLoss;
                totalLossCount++;
            }

            //calc perplexity
            return(Math.Exp(totalLoss / (totalLossCount - 1)));
        }
Example #2
0
        static double Evaluate(FunctionStack model, int[] dataset)
        {
            FunctionStack predictModel = (FunctionStack)model.Clone();

            predictModel.ResetState();

            Real totalLoss      = 0;
            long totalLossCount = 0;

            for (int i = 0; i < dataset.Length - 1; i++)
            {
                NdArray x = new NdArray(new[] { 1 }, BATCH_SIZE);
                NdArray t = new NdArray(new[] { 1 }, BATCH_SIZE);

                for (int j = 0; j < BATCH_SIZE; j++)
                {
                    x.Data[j] = dataset[j + i];
                    t.Data[j] = dataset[j + i + 1];
                }

                Real sumLoss = new SoftmaxCrossEntropy().Evaluate(predictModel.Forward(x), t);
                totalLoss += sumLoss;
                totalLossCount++;
            }

            //calc perplexity
            return(Math.Exp(totalLoss / (totalLossCount - 1)));
        }
Example #3
0
        static Real ComputeLoss(FunctionStack model, NdArray[] sequences)
        {
            Ensure.Argument(model).NotNull();
            Ensure.Argument(sequences).NotNull();

            // Total error in the whole
            Real    totalLoss = 0;
            NdArray x         = new NdArray(new[] { 1 }, MINI_BATCH_SIZE, (Function)null);
            NdArray t         = new NdArray(new[] { 1 }, MINI_BATCH_SIZE, (Function)null);

            Stack <NdArray[]> backNdArrays = new Stack <NdArray[]>();

            for (int i = 0; i < LENGTH_OF_SEQUENCE - 1; i++)
            {
                for (int j = 0; j < MINI_BATCH_SIZE; j++)
                {
                    x.Data[j] = sequences[j].Data[i];
                    t.Data[j] = sequences[j].Data[i + 1];
                }

                NdArray[] result = model.Forward(true, x);
                totalLoss += new MeanSquaredError().Evaluate(result, t);
                backNdArrays.Push(result);
            }

            for (int i = 0; backNdArrays.Count > 0; i++)
            {
                model.Backward(true, backNdArrays.Pop());
            }

            return(totalLoss / (LENGTH_OF_SEQUENCE - 1));
        }
Example #4
0
        static Real ComputeLoss(FunctionStack model, NdArray[] sequences)
        {
            //全体での誤差を集計
            Real    totalLoss = 0;
            NdArray x         = new NdArray(new[] { 1 }, MINI_BATCH_SIZE);
            NdArray t         = new NdArray(new[] { 1 }, MINI_BATCH_SIZE);

            Stack <NdArray[]> backNdArrays = new Stack <NdArray[]>();

            for (int i = 0; i < LENGTH_OF_SEQUENCE - 1; i++)
            {
                for (int j = 0; j < MINI_BATCH_SIZE; j++)
                {
                    x.Data[j] = sequences[j].Data[i];
                    t.Data[j] = sequences[j].Data[i + 1];
                }

                NdArray[] result = model.Forward(x);
                totalLoss += new MeanSquaredError().Evaluate(result, t);
                backNdArrays.Push(result);
            }

            for (int i = 0; backNdArrays.Count > 0; i++)
            {
                model.Backward(backNdArrays.Pop());
            }

            return(totalLoss / (LENGTH_OF_SEQUENCE - 1));
        }
Example #5
0
        //バッチで学習処理を行う
        public static Real Train(FunctionStack functionStack, NdArray input, NdArray teach, LossFunction lossFunction, bool isUpdate = true)
        {
            //結果の誤差保存用
            NdArray[] result  = functionStack.Forward(input);
            Real      sumLoss = lossFunction.Evaluate(result, teach);

            //Backwardのバッチを実行
            functionStack.Backward(result);

            //更新
            if (isUpdate)
            {
                functionStack.Update();
            }

            return(sumLoss);
        }
Example #6
0
        //Perform learning process in batch
        public static Real Train(FunctionStack functionStack, NdArray input, NdArray teach, LossFunction lossFunction, bool isUpdate = true)
        {
            //For preserving error of result
            NdArray[] result  = functionStack.Forward(input);
            Real      sumLoss = lossFunction.Evaluate(result, teach);

            //Run Backward's batch
            functionStack.Backward(result);

            //update
            if (isUpdate)
            {
                functionStack.Update();
            }

            return(sumLoss);
        }
Example #7
0
        ////////////////////////////////////////////////////////////////////////////////////////////////////
        /// <summary>   Do a learning process with a batch. </summary>
        ///
        /// <param name="functionStack">    Stack of functions. </param>
        /// <param name="input">            The input data. </param>
        /// <param name="teach">            The teaching data. </param>
        /// <param name="lossFunction">     The loss function. </param>
        /// <param name="isUpdate">         (Optional) True if this object is being updated. </param>
        ///
        /// <returns>   A Real. </returns>
        ////////////////////////////////////////////////////////////////////////////////////////////////////

        public static Real Train([NotNull] FunctionStack functionStack, [CanBeNull] NdArray input, [CanBeNull] NdArray teach, [NotNull] LossFunction lossFunction, bool isUpdate = true,
                                 bool verbose = true)
        {
            if (verbose)
            {
                RILogManager.Default?.EnterMethod("Training " + functionStack.Name);
            }

            if (verbose)
            {
                RILogManager.Default?.SendDebug("Forward propagation");
            }
            NdArray[] result = functionStack.Forward(verbose, input);
            if (verbose)
            {
                RILogManager.Default?.SendDebug("Evaluating loss");
            }
            Real sumLoss = lossFunction.Evaluate(result, teach);

            // Run Backward batch
            if (verbose)
            {
                RILogManager.Default?.SendDebug("Backward propagation");
            }
            functionStack.Backward(verbose, result);

            if (isUpdate)
            {
                if (verbose)
                {
                    RILogManager.Default?.SendDebug("Updating stack");
                }
                functionStack.Update();
            }

            if (verbose)
            {
                RILogManager.Default?.ExitMethod("Training " + functionStack.Name);
                RILogManager.Default?.ViewerSendWatch("Local Loss", sumLoss.ToString(), sumLoss);
            }

            return(sumLoss);
        }
Example #8
0
        static Real ComputeLoss(FunctionStack <Real> model, NdArray <Real>[] sequences)
        {
            //全体での誤差を集計
            Real           totalLoss = 0;
            NdArray <Real> x         = new NdArray <Real>(new[] { 1 }, MINI_BATCH_SIZE);
            NdArray <Real> t         = new NdArray <Real>(new[] { 1 }, MINI_BATCH_SIZE);

            for (int i = 0; i < LENGTH_OF_SEQUENCE - 1; i++)
            {
                for (int j = 0; j < MINI_BATCH_SIZE; j++)
                {
                    x.Data[j] = sequences[j].Data[i];
                    t.Data[j] = sequences[j].Data[i + 1];
                }

                NdArray <Real> result = model.Forward(x)[0];
                totalLoss += new MeanSquaredError <Real>().Evaluate(result, t);
                model.Backward(result);
            }

            return(totalLoss / (LENGTH_OF_SEQUENCE - 1));
        }
Example #9
0
        public static void Run()
        {
            Console.WriteLine("Build Vocabulary.");

            Vocabulary vocabulary = new Vocabulary();

            string trainPath = InternetFileDownloader.Donwload(DOWNLOAD_URL + TRAIN_FILE, TRAIN_FILE);
            string validPath = InternetFileDownloader.Donwload(DOWNLOAD_URL + VALID_FILE, VALID_FILE);
            string testPath  = InternetFileDownloader.Donwload(DOWNLOAD_URL + TEST_FILE, TEST_FILE);

            int[] trainData = vocabulary.LoadData(trainPath);
            int[] validData = vocabulary.LoadData(validPath);
            int[] testData  = vocabulary.LoadData(testPath);

            int nVocab = vocabulary.Length;

            Console.WriteLine("Network Initilizing.");
            FunctionStack model = new FunctionStack(
                new EmbedID(nVocab, N_UNITS, name: "l1 EmbedID"),
                new Dropout(),
                new LSTM(N_UNITS, N_UNITS, name: "l2 LSTM"),
                new Dropout(),
                new LSTM(N_UNITS, N_UNITS, name: "l3 LSTM"),
                new Dropout(),
                new Linear(N_UNITS, nVocab, name: "l4 Linear")
                );

            //与えられたthresholdで頭打ちではなく、全パラメータのL2Normからレートを取り補正を行う
            GradientClipping gradientClipping = new GradientClipping(threshold: GRAD_CLIP);
            SGD sgd = new SGD(learningRate: 1);

            model.SetOptimizer(gradientClipping, sgd);

            Real wholeLen = trainData.Length;
            int  jump     = (int)Math.Floor(wholeLen / BATCH_SIZE);
            int  epoch    = 0;

            Stack <NdArray[]> backNdArrays = new Stack <NdArray[]>();

            Console.WriteLine("Train Start.");

            for (int i = 0; i < jump * N_EPOCH; i++)
            {
                NdArray x = new NdArray(new[] { 1 }, BATCH_SIZE);
                NdArray t = new NdArray(new[] { 1 }, BATCH_SIZE);

                for (int j = 0; j < BATCH_SIZE; j++)
                {
                    x.Data[j] = trainData[(int)((jump * j + i) % wholeLen)];
                    t.Data[j] = trainData[(int)((jump * j + i + 1) % wholeLen)];
                }

                NdArray[] result  = model.Forward(x);
                Real      sumLoss = new SoftmaxCrossEntropy().Evaluate(result, t);
                backNdArrays.Push(result);
                Console.WriteLine("[{0}/{1}] Loss: {2}", i + 1, jump, sumLoss);

                //Run truncated BPTT
                if ((i + 1) % BPROP_LEN == 0)
                {
                    for (int j = 0; backNdArrays.Count > 0; j++)
                    {
                        Console.WriteLine("backward" + backNdArrays.Count);
                        model.Backward(backNdArrays.Pop());
                    }

                    model.Update();
                    model.ResetState();
                }

                if ((i + 1) % jump == 0)
                {
                    epoch++;
                    Console.WriteLine("evaluate");
                    Console.WriteLine("validation perplexity: {0}", Evaluate(model, validData));

                    if (epoch >= 6)
                    {
                        sgd.LearningRate /= 1.2;
                        Console.WriteLine("learning rate =" + sgd.LearningRate);
                    }
                }
            }

            Console.WriteLine("test start");
            Console.WriteLine("test perplexity:" + Evaluate(model, testData));
        }
Example #10
0
        public static void Run()
        {
            _outputStream = File.Create(LogPath);

            _logWriter = new HistogramLogWriter(_outputStream);
            _logWriter.Write(DateTime.Now);

            var recorder = HistogramFactory
                           .With64BitBucketSize()
                           ?.WithValuesFrom(1)
                           ?.WithValuesUpTo(2345678912345)
                           ?.WithPrecisionOf(3)
                           ?.WithThreadSafeWrites()
                           ?.WithThreadSafeReads()
                           ?.Create();

            var accumulatingHistogram = new LongHistogram(2345678912345, 3);

            var size = accumulatingHistogram.GetEstimatedFootprintInBytes();

            RILogManager.Default?.SendDebug("Histogram size = {0} bytes ({1:F2} MB)", size, size / 1024.0 / 1024.0);


            RILogManager.Default?.SendDebug("Recorded latencies [in system clock ticks]");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.None, useCsvFormat: true);
            Console.WriteLine();

            RILogManager.Default?.SendDebug("Recorded latencies [in usec]");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToMicroseconds, useCsvFormat: true);
            Console.WriteLine();

            RILogManager.Default?.SendDebug("Recorded latencies [in msec]");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToMilliseconds, useCsvFormat: true);
            Console.WriteLine();

            RILogManager.Default?.SendDebug("Recorded latencies [in sec]");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToSeconds, useCsvFormat: true);

            DocumentResults(accumulatingHistogram, recorder);

            RILogManager.Default?.SendDebug("Build Vocabulary.");

            DocumentResults(accumulatingHistogram, recorder);

            Vocabulary vocabulary = new Vocabulary();

            DocumentResults(accumulatingHistogram, recorder);

            string trainPath = InternetFileDownloader.Download(DOWNLOAD_URL + TRAIN_FILE, TRAIN_FILE);

            DocumentResults(accumulatingHistogram, recorder);

            string validPath = InternetFileDownloader.Download(DOWNLOAD_URL + VALID_FILE, VALID_FILE);

            DocumentResults(accumulatingHistogram, recorder);

            string testPath = InternetFileDownloader.Download(DOWNLOAD_URL + TEST_FILE, TEST_FILE);

            DocumentResults(accumulatingHistogram, recorder);


            int[] trainData = vocabulary.LoadData(trainPath);
            DocumentResults(accumulatingHistogram, recorder);

            int[] validData = vocabulary.LoadData(validPath);
            DocumentResults(accumulatingHistogram, recorder);

            int[] testData = vocabulary.LoadData(testPath);
            DocumentResults(accumulatingHistogram, recorder);

            int nVocab = vocabulary.Length;

            RILogManager.Default?.SendDebug("Network Initializing.");
            FunctionStack model = new FunctionStack("Test10",
                                                    new EmbedID(nVocab, N_UNITS, name: "l1 EmbedID"),
                                                    new Dropout(),
                                                    new LSTM(true, N_UNITS, N_UNITS, name: "l2 LSTM"),
                                                    new Dropout(),
                                                    new LSTM(true, N_UNITS, N_UNITS, name: "l3 LSTM"),
                                                    new Dropout(),
                                                    new Linear(true, N_UNITS, nVocab, name: "l4 Linear")
                                                    );

            DocumentResults(accumulatingHistogram, recorder);

            // Do not cease at the given threshold, correct the rate by taking the rate from L2Norm of all parameters
            GradientClipping gradientClipping = new GradientClipping(threshold: GRAD_CLIP);
            SGD sgd = new SGD(learningRate: 1);

            model.SetOptimizer(gradientClipping, sgd);
            DocumentResults(accumulatingHistogram, recorder);

            Real wholeLen = trainData.Length;
            int  jump     = (int)Math.Floor(wholeLen / BATCH_SIZE);
            int  epoch    = 0;

            Stack <NdArray[]> backNdArrays = new Stack <NdArray[]>();

            RILogManager.Default?.SendDebug("Train Start.");
            double  dVal;
            NdArray x = new NdArray(new[] { 1 }, BATCH_SIZE, (Function)null);
            NdArray t = new NdArray(new[] { 1 }, BATCH_SIZE, (Function)null);

            for (int i = 0; i < jump * N_EPOCH; i++)
            {
                for (int j = 0; j < BATCH_SIZE; j++)
                {
                    x.Data[j] = trainData[(int)((jump * j + i) % wholeLen)];
                    t.Data[j] = trainData[(int)((jump * j + i + 1) % wholeLen)];
                }

                NdArray[] result  = model.Forward(true, x);
                Real      sumLoss = new SoftmaxCrossEntropy().Evaluate(result, t);
                backNdArrays.Push(result);
                RILogManager.Default?.SendDebug("[{0}/{1}] Loss: {2}", i + 1, jump, sumLoss);

                //Run truncated BPTT
                if ((i + 1) % BPROP_LEN == 0)
                {
                    for (int j = 0; backNdArrays.Count > 0; j++)
                    {
                        RILogManager.Default?.SendDebug("backward" + backNdArrays.Count);
                        model.Backward(true, backNdArrays.Pop());
                    }

                    model.Update();
                    model.ResetState();
                }

                if ((i + 1) % jump == 0)
                {
                    epoch++;
                    RILogManager.Default?.SendDebug("evaluate");
                    dVal = Evaluate(model, validData);
                    RILogManager.Default?.SendDebug($"validation perplexity: {dVal}");

                    if (epoch >= 6)
                    {
                        sgd.LearningRate /= 1.2;
                        RILogManager.Default?.SendDebug("learning rate =" + sgd.LearningRate);
                    }
                }
                DocumentResults(accumulatingHistogram, recorder);
            }

            RILogManager.Default?.SendDebug("test start");
            dVal = Evaluate(model, testData);
            RILogManager.Default?.SendDebug("test perplexity:" + dVal);
            DocumentResults(accumulatingHistogram, recorder);

            _logWriter.Dispose();
            _outputStream.Dispose();


            RILogManager.Default?.SendDebug("Log contents");
            RILogManager.Default?.SendDebug(File.ReadAllText(LogPath));
            Console.WriteLine();
            RILogManager.Default?.SendDebug("Percentile distribution (values reported in milliseconds)");
            accumulatingHistogram.OutputPercentileDistribution(Console.Out, outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToMilliseconds, useCsvFormat: true);

            RILogManager.Default?.SendDebug("Mean: " + BytesToString(accumulatingHistogram.GetMean()) + ", StdDev: " +
                                            BytesToString(accumulatingHistogram.GetStdDeviation()));
        }
Example #11
0
        public static void Run()
        {
            //MNISTのデータを用意する
            Console.WriteLine("MNIST Data Loading...");
            MnistData <Real> mnistData = new MnistData <Real>();

            Console.WriteLine("Training Start...");

            //ネットワークの構成を FunctionStack に書き連ねる
            FunctionStack <Real> Layer1 = new FunctionStack <Real>(
                new Linear <Real>(28 * 28, 256, name: "l1 Linear"),
                new BatchNormalization <Real>(256, name: "l1 Norm"),
                new ReLU <Real>(name: "l1 ReLU")
                );

            FunctionStack <Real> Layer2 = new FunctionStack <Real>(
                new Linear <Real>(256, 256, name: "l2 Linear"),
                new BatchNormalization <Real>(256, name: "l2 Norm"),
                new ReLU <Real>(name: "l2 ReLU")
                );

            FunctionStack <Real> Layer3 = new FunctionStack <Real>(
                new Linear <Real>(256, 256, name: "l3 Linear"),
                new BatchNormalization <Real>(256, name: "l3 Norm"),
                new ReLU <Real>(name: "l3 ReLU")
                );

            FunctionStack <Real> Layer4 = new FunctionStack <Real>(
                new Linear <Real>(256, 10, name: "l4 Linear")
                );

            //FunctionStack自身もFunctionとして積み上げられる
            FunctionStack <Real> nn = new FunctionStack <Real>
                                      (
                Layer1,
                Layer2,
                Layer3,
                Layer4
                                      );

            FunctionStack <Real> cDNI1 = new FunctionStack <Real>(
                new Linear <Real>(256 + 10, 1024, name: "cDNI1 Linear1"),
                new BatchNormalization <Real>(1024, name: "cDNI1 Nrom1"),
                new ReLU <Real>(name: "cDNI1 ReLU1"),
                new Linear <Real>(1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                );

            FunctionStack <Real> cDNI2 = new FunctionStack <Real>(
                new Linear <Real>(256 + 10, 1024, name: "cDNI2 Linear1"),
                new BatchNormalization <Real>(1024, name: "cDNI2 Nrom1"),
                new ReLU <Real>(name: "cDNI2 ReLU1"),
                new Linear <Real>(1024, 256, initialW: new Real[1024, 256], name: "cDNI2 Linear3")
                );

            FunctionStack <Real> cDNI3 = new FunctionStack <Real>(
                new Linear <Real>(256 + 10, 1024, name: "cDNI3 Linear1"),
                new BatchNormalization <Real>(1024, name: "cDNI3 Nrom1"),
                new ReLU <Real>(name: "cDNI3 ReLU1"),
                new Linear <Real>(1024, 256, initialW: new Real[1024, 256], name: "cDNI3 Linear3")
                );

            //optimizerを宣言
            //optimizerを宣言
            Adam <Real> L1adam = new Adam <Real>(0.00003f);
            Adam <Real> L2adam = new Adam <Real>(0.00003f);
            Adam <Real> L3adam = new Adam <Real>(0.00003f);
            Adam <Real> L4adam = new Adam <Real>(0.00003f);

            L1adam.SetUp(Layer1);
            L2adam.SetUp(Layer2);
            L3adam.SetUp(Layer3);
            L4adam.SetUp(Layer4);

            Adam <Real> cDNI1adam = new Adam <Real>(0.00003f);
            Adam <Real> cDNI2adam = new Adam <Real>(0.00003f);
            Adam <Real> cDNI3adam = new Adam <Real>(0.00003f);

            cDNI1adam.SetUp(cDNI1);
            cDNI2adam.SetUp(cDNI2);
            cDNI3adam.SetUp(cDNI3);

            for (int epoch = 0; epoch < 10; epoch++)
            {
                Console.WriteLine("epoch " + (epoch + 1));

                //全体での誤差を集計
                Real totalLoss      = 0;
                Real cDNI1totalLoss = 0;
                Real cDNI2totalLoss = 0;
                Real cDNI3totalLoss = 0;

                long totalLossCount      = 0;
                long cDNI1totalLossCount = 0;
                long cDNI2totalLossCount = 0;
                long cDNI3totalLossCount = 0;


                //何回バッチを実行するか
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    //訓練データからランダムにデータを取得
                    TestDataSet <Real> datasetX = mnistData.Train.GetRandomDataSet(BATCH_DATA_COUNT);

                    //第一層を実行
                    NdArray <Real> layer1ForwardResult = Layer1.Forward(datasetX.Data)[0];
                    ResultDataSet  layer1ResultDataSet = new ResultDataSet(layer1ForwardResult, datasetX.Label);

                    //第一層の傾きを取得
                    NdArray <Real> cDNI1Result = cDNI1.Forward(layer1ResultDataSet.GetTrainData())[0];

                    //第一層の傾きを適用
                    layer1ForwardResult.Grad = cDNI1Result.Data.ToArray();

                    //第一層を更新
                    Layer1.Backward(layer1ForwardResult);
                    layer1ForwardResult.ParentFunc = null;
                    L1adam.Update();

                    //第二層を実行
                    NdArray <Real> layer2ForwardResult = Layer2.Forward(layer1ResultDataSet.Result)[0];
                    ResultDataSet  layer2ResultDataSet = new ResultDataSet(layer2ForwardResult, layer1ResultDataSet.Label);

                    //第二層の傾きを取得
                    NdArray <Real> cDNI2Result = cDNI2.Forward(layer2ResultDataSet.GetTrainData())[0];

                    //第二層の傾きを適用
                    layer2ForwardResult.Grad = cDNI2Result.Data.ToArray();

                    //第二層を更新
                    Layer2.Backward(layer2ForwardResult);
                    layer2ForwardResult.ParentFunc = null;


                    //第一層用のcDNIの学習を実行
                    Real cDNI1loss = new MeanSquaredError <Real>().Evaluate(cDNI1Result, new NdArray <Real>(layer1ResultDataSet.Result.Grad, cDNI1Result.Shape, cDNI1Result.BatchCount));

                    L2adam.Update();

                    cDNI1.Backward(cDNI1Result);
                    cDNI1adam.Update();

                    cDNI1totalLoss += cDNI1loss;
                    cDNI1totalLossCount++;

                    //第三層を実行
                    NdArray <Real> layer3ForwardResult = Layer3.Forward(layer2ResultDataSet.Result)[0];
                    ResultDataSet  layer3ResultDataSet = new ResultDataSet(layer3ForwardResult, layer2ResultDataSet.Label);

                    //第三層の傾きを取得
                    NdArray <Real> cDNI3Result = cDNI3.Forward(layer3ResultDataSet.GetTrainData())[0];

                    //第三層の傾きを適用
                    layer3ForwardResult.Grad = cDNI3Result.Data.ToArray();

                    //第三層を更新
                    Layer3.Backward(layer3ForwardResult);
                    layer3ForwardResult.ParentFunc = null;

                    //第二層用のcDNIの学習を実行
                    Real cDNI2loss = new MeanSquaredError <Real>().Evaluate(cDNI2Result, new NdArray <Real>(layer2ResultDataSet.Result.Grad, cDNI2Result.Shape, cDNI2Result.BatchCount));

                    L3adam.Update();

                    cDNI2.Backward(cDNI2Result);
                    cDNI2adam.Update();

                    cDNI2totalLoss += cDNI2loss;
                    cDNI2totalLossCount++;

                    //第四層を実行
                    NdArray <Real> layer4ForwardResult = Layer4.Forward(layer3ResultDataSet.Result)[0];

                    //第四層の傾きを取得
                    Real sumLoss = new SoftmaxCrossEntropy <Real>().Evaluate(layer4ForwardResult, layer3ResultDataSet.Label);

                    //第四層を更新
                    Layer4.Backward(layer4ForwardResult);
                    layer4ForwardResult.ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    //第三層用のcDNIの学習を実行
                    Real cDNI3loss = new MeanSquaredError <Real>().Evaluate(cDNI3Result, new NdArray <Real>(layer3ResultDataSet.Result.Grad, cDNI3Result.Shape, cDNI3Result.BatchCount));

                    L4adam.Update();

                    cDNI3.Backward(cDNI3Result);
                    cDNI3adam.Update();

                    cDNI3totalLoss += cDNI3loss;
                    cDNI3totalLossCount++;

                    Console.WriteLine("\nbatch count " + i + "/" + TRAIN_DATA_COUNT);
                    //結果出力
                    Console.WriteLine("total loss " + totalLoss / totalLossCount);
                    Console.WriteLine("local loss " + sumLoss);

                    Console.WriteLine("\ncDNI1 total loss " + cDNI1totalLoss / cDNI1totalLossCount);
                    Console.WriteLine("cDNI2 total loss " + cDNI2totalLoss / cDNI2totalLossCount);
                    Console.WriteLine("cDNI3 total loss " + cDNI3totalLoss / cDNI3totalLossCount);

                    Console.WriteLine("\ncDNI1 local loss " + cDNI1loss);
                    Console.WriteLine("cDNI2 local loss " + cDNI2loss);
                    Console.WriteLine("cDNI3 local loss " + cDNI3loss);

                    //20回バッチを動かしたら精度をテストする
                    if (i % 20 == 0)
                    {
                        Console.WriteLine("\nTesting...");

                        //テストデータからランダムにデータを取得
                        TestDataSet <Real> datasetY = mnistData.Eval.GetRandomDataSet(TEST_DATA_COUNT);

                        //テストを実行
                        Real accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        Console.WriteLine("accuracy " + accuracy);
                    }
                }
            }
        }
Example #12
0
        public static void Run()
        {
            //Prepare MNIST data
            Console.WriteLine("MNIST Data Loading...");
            MnistData mnistData = new MnistData();

            Console.WriteLine("Training Start...");

            //Writing the network configuration in FunctionStack
            FunctionStack Layer1 = new FunctionStack(
                new Linear(28 * 28, 256, name: "l1 Linear"),
                new BatchNormalization(256, name: "l1 Norm"),
                new ReLU(name: "l1 ReLU")
                );

            FunctionStack Layer2 = new FunctionStack(
                new Linear(256, 256, name: "l2 Linear"),
                new BatchNormalization(256, name: "l2 Norm"),
                new ReLU(name: "l2 ReLU")
                );

            FunctionStack Layer3 = new FunctionStack(
                new Linear(256, 256, name: "l3 Linear"),
                new BatchNormalization(256, name: "l3 Norm"),
                new ReLU(name: "l3 ReLU")
                );

            FunctionStack Layer4 = new FunctionStack(
                new Linear(256, 10, name: "l4 Linear")
                );

            //FunctionStack itself is also stacked as Function
            FunctionStack nn = new FunctionStack
                               (
                Layer1,
                Layer2,
                Layer3,
                Layer4
                               );

            FunctionStack cDNI1 = new FunctionStack(
                new Linear(256 + 10, 1024, name: "cDNI1 Linear1"),
                new BatchNormalization(1024, name: "cDNI1 Nrom1"),
                new ReLU(name: "cDNI1 ReLU1"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                );

            FunctionStack cDNI2 = new FunctionStack(
                new Linear(256 + 10, 1024, name: "cDNI2 Linear1"),
                new BatchNormalization(1024, name: "cDNI2 Nrom1"),
                new ReLU(name: "cDNI2 ReLU1"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "cDNI2 Linear3")
                );

            FunctionStack cDNI3 = new FunctionStack(
                new Linear(256 + 10, 1024, name: "cDNI3 Linear1"),
                new BatchNormalization(1024, name: "cDNI3 Nrom1"),
                new ReLU(name: "cDNI3 ReLU1"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "cDNI3 Linear3")
                );

            //Declare optimizer
            Layer1.SetOptimizer(new Adam(0.00003f));
            Layer2.SetOptimizer(new Adam(0.00003f));
            Layer3.SetOptimizer(new Adam(0.00003f));
            Layer4.SetOptimizer(new Adam(0.00003f));

            cDNI1.SetOptimizer(new Adam(0.00003f));
            cDNI2.SetOptimizer(new Adam(0.00003f));
            cDNI3.SetOptimizer(new Adam(0.00003f));

            for (int epoch = 0; epoch < 10; epoch++)
            {
                Console.WriteLine("epoch " + (epoch + 1));

                //Total error in the whole
                Real totalLoss      = 0;
                Real cDNI1totalLoss = 0;
                Real cDNI2totalLoss = 0;
                Real cDNI3totalLoss = 0;

                long totalLossCount      = 0;
                long cDNI1totalLossCount = 0;
                long cDNI2totalLossCount = 0;
                long cDNI3totalLossCount = 0;


                //How many times to run the batch
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    //Get data randomly from training data
                    TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT);

                    //Run first tier
                    NdArray[]     layer1ForwardResult = Layer1.Forward(datasetX.Data);
                    ResultDataSet layer1ResultDataSet = new ResultDataSet(layer1ForwardResult, datasetX.Label);

                    //Get the inclination of the first layer
                    NdArray[] cDNI1Result = cDNI1.Forward(layer1ResultDataSet.GetTrainData());

                    //Apply the inclination of the first layer
                    layer1ForwardResult[0].Grad = cDNI1Result[0].Data.ToArray();

                    //Update first layer
                    Layer1.Backward(layer1ForwardResult);
                    layer1ForwardResult[0].ParentFunc = null;
                    Layer1.Update();

                    //Run Layer 2
                    NdArray[]     layer2ForwardResult = Layer2.Forward(layer1ResultDataSet.Result);
                    ResultDataSet layer2ResultDataSet = new ResultDataSet(layer2ForwardResult, layer1ResultDataSet.Label);

                    //Get inclination of second layer
                    NdArray[] cDNI2Result = cDNI2.Forward(layer2ResultDataSet.GetTrainData());

                    //Apply the inclination of the second layer
                    layer2ForwardResult[0].Grad = cDNI2Result[0].Data.ToArray();

                    //Update 2nd tier
                    Layer2.Backward(layer2ForwardResult);
                    layer2ForwardResult[0].ParentFunc = null;


                    //Perform learning of first layer cDNI
                    Real cDNI1loss = new MeanSquaredError().Evaluate(cDNI1Result, new NdArray(layer1ResultDataSet.Result[0].Grad, cDNI1Result[0].Shape, cDNI1Result[0].BatchCount));

                    Layer2.Update();

                    cDNI1.Backward(cDNI1Result);
                    cDNI1.Update();

                    cDNI1totalLoss += cDNI1loss;
                    cDNI1totalLossCount++;

                    //Run Third Tier
                    NdArray[]     layer3ForwardResult = Layer3.Forward(layer2ResultDataSet.Result);
                    ResultDataSet layer3ResultDataSet = new ResultDataSet(layer3ForwardResult, layer2ResultDataSet.Label);

                    //Get the inclination of the third layer
                    NdArray[] cDNI3Result = cDNI3.Forward(layer3ResultDataSet.GetTrainData());

                    //Apply the inclination of the third layer
                    layer3ForwardResult[0].Grad = cDNI3Result[0].Data.ToArray();

                    //Update third layer
                    Layer3.Backward(layer3ForwardResult);
                    layer3ForwardResult[0].ParentFunc = null;

                    //Perform learning of cDNI for layer 2
                    Real cDNI2loss = new MeanSquaredError().Evaluate(cDNI2Result, new NdArray(layer2ResultDataSet.Result[0].Grad, cDNI2Result[0].Shape, cDNI2Result[0].BatchCount));

                    Layer3.Update();

                    cDNI2.Backward(cDNI2Result);
                    cDNI2.Update();

                    cDNI2totalLoss += cDNI2loss;
                    cDNI2totalLossCount++;

                    //Run Layer 4
                    NdArray[] layer4ForwardResult = Layer4.Forward(layer3ResultDataSet.Result);

                    //Get inclination of the fourth layer
                    Real sumLoss = new SoftmaxCrossEntropy().Evaluate(layer4ForwardResult, layer3ResultDataSet.Label);

                    //Update fourth layer
                    Layer4.Backward(layer4ForwardResult);
                    layer4ForwardResult[0].ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    //Perform learning of cDNI for the third layer
                    Real cDNI3loss = new MeanSquaredError().Evaluate(cDNI3Result, new NdArray(layer3ResultDataSet.Result[0].Grad, cDNI3Result[0].Shape, cDNI3Result[0].BatchCount));

                    Layer4.Update();

                    cDNI3.Backward(cDNI3Result);
                    cDNI3.Update();

                    cDNI3totalLoss += cDNI3loss;
                    cDNI3totalLossCount++;

                    Console.WriteLine("\nbatch count " + i + "/" + TRAIN_DATA_COUNT);
                    //Result output
                    Console.WriteLine("total loss " + totalLoss / totalLossCount);
                    Console.WriteLine("local loss " + sumLoss);

                    Console.WriteLine("\ncDNI1 total loss " + cDNI1totalLoss / cDNI1totalLossCount);
                    Console.WriteLine("cDNI2 total loss " + cDNI2totalLoss / cDNI2totalLossCount);
                    Console.WriteLine("cDNI3 total loss " + cDNI3totalLoss / cDNI3totalLossCount);

                    Console.WriteLine("\ncDNI1 local loss " + cDNI1loss);
                    Console.WriteLine("cDNI2 local loss " + cDNI2loss);
                    Console.WriteLine("cDNI3 local loss " + cDNI3loss);

                    //Test the accuracy if you move the batch 20 times
                    if (i % 20 == 0)
                    {
                        Console.WriteLine("\nTesting...");

                        //Get data randomly from test data
                        TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT);

                        //Run test
                        Real accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        Console.WriteLine("accuracy " + accuracy);
                    }
                }
            }
        }
    public static void Main()
    {
        // platformIdは、OpenCL・GPUの導入の記事に書いてある方法でご確認ください
        // https://jinbeizame.hateblo.jp/entry/kelpnet_opencl_gpu
        Weaver.Initialize(ComputeDeviceTypes.Gpu, platformId: 1, deviceIndex: 0);

        // ネットからVGGの学習済みモデルをダウンロード
        string modelFilePath = InternetFileDownloader.Donwload(DOWNLOAD_URL, MODEL_FILE);
        // 学習済みモデルをFunctionのリストとして保存
        List <Function> vgg16Net = CaffemodelDataLoader.ModelLoad(modelFilePath);

        // VGGの出力層とその活性化関数を削除
        vgg16Net.RemoveAt(vgg16Net.Count() - 1);
        vgg16Net.RemoveAt(vgg16Net.Count() - 1);

        // VGGの各FunctionのgpuEnableをtrueに
        for (int i = 0; i < vgg16Net.Count - 1; i++)
        {
            // GPUに対応している層であれば、GPU対応へ
            if (vgg16Net[i] is Convolution2D || vgg16Net[i] is Linear || vgg16Net[i] is MaxPooling)
            {
                ((IParallelizable)vgg16Net[i]).SetGpuEnable(true);
            }
        }

        // VGGをリストからFunctionStackに変換
        FunctionStack vgg = new FunctionStack(vgg16Net.ToArray());

        // 層を圧縮
        vgg.Compress();

        // 新しく出力層とその活性化関数を用意
        FunctionStack nn = new FunctionStack(
            new Linear(4096, 1, gpuEnable: true),
            new Sigmoid()
            );

        // 最適化手法としてAdamをセット
        nn.SetOptimizer(new Adam());

        Console.WriteLine("DataSet Loading...");

        // 訓練・テストデータ用のNdArrayを用意
        // データセットは以下のURLからダウンロードを行い、
        // VGGTransfer /bin/Debug/Data にtrainフォルダを置いてください。
        // https://www.kaggle.com/c/dogs-vs-cats/data
        NdArray[] trainData  = new NdArray[TRAIN_DATA_LENGTH * 2];
        NdArray[] trainLabel = new NdArray[TRAIN_DATA_LENGTH * 2];
        NdArray[] testData   = new NdArray[TEST_DATA_LENGTH * 2];
        NdArray[] testLabel  = new NdArray[TEST_DATA_LENGTH * 2];

        for (int i = 0; i < TRAIN_DATA_LENGTH + TEST_DATA_LENGTH; i++)
        {
            // 犬・猫の画像読み込み
            Bitmap baseCatImage = new Bitmap("Data/train/cat." + i + ".jpg");
            Bitmap baseDogImage = new Bitmap("Data/train/dog." + i + ".jpg");
            // 変換後の画像を格納するBitmapを定義
            Bitmap catImage = new Bitmap(224, 224, PixelFormat.Format24bppRgb);
            Bitmap dogImage = new Bitmap(224, 224, PixelFormat.Format24bppRgb);
            // Graphicsオブジェクトに変換
            Graphics gCat = Graphics.FromImage(catImage);
            Graphics gDog = Graphics.FromImage(dogImage);
            // Graphicsオブジェクト(の中のcatImageに)baseImageを変換して描画
            gCat.DrawImage(baseCatImage, 0, 0, 224, 224);
            gDog.DrawImage(baseDogImage, 0, 0, 224, 224);
            // Graphicsオブジェクトを破棄し、メモリを解放
            gCat.Dispose();
            gDog.Dispose();

            // 訓練・テストデータにデータを格納
            // 先にテストデータの枚数分テストデータに保存し、その後訓練データを保存する
            // 画素値の値域は0 ~ 255のため、255で割ることで0 ~ 1に正規化
            if (i < TEST_DATA_LENGTH)
            {
                // ImageをNdArrayに変換したものをvggに入力し、出力した特徴量を入力データとして保存
                testData[i * 2]      = vgg.Predict(NdArrayConverter.Image2NdArray(catImage, false, true) / 255.0)[0];
                testLabel[i * 2]     = new NdArray(new Real[] { 0 });
                testData[i * 2 + 1]  = vgg.Predict(NdArrayConverter.Image2NdArray(dogImage, false, true) / 255.0)[0];
                testLabel[i * 2 + 1] = new NdArray(new Real[] { 1 });
            }
            else
            {
                trainData[(i - TEST_DATA_LENGTH) * 2]  = vgg.Predict(NdArrayConverter.Image2NdArray(catImage, false, true) / 255.0)[0];
                trainLabel[(i - TEST_DATA_LENGTH) * 2] = new NdArray(new Real[] { 0 }); //new Real [] { 0 };
                trainData[(i - TEST_DATA_LENGTH) * 2]  = vgg.Predict(NdArrayConverter.Image2NdArray(dogImage, false, true) / 255.0)[0];
                trainLabel[(i - TEST_DATA_LENGTH) * 2] = new NdArray(new Real[] { 1 }); // = new Real [] { 1 };
            }
        }

        Console.WriteLine("Training Start...");

        // ミニバッチ用のNdArrayを定義
        NdArray batchData  = new NdArray(new[] { 4096 }, BATCH_SIZE);
        NdArray batchLabel = new NdArray(new[] { 1 }, BATCH_SIZE);

        // 誤差関数を定義(今回は二値分類なので二乗誤差関数(MSE))
        LossFunction lossFunction = new MeanSquaredError();

        // エポックを回す
        for (int epoch = 0; epoch < 10; epoch++)
        {
            // 1エポックで訓練データ // バッチサイズ の回数分学習
            for (int step = 0; step < TRAIN_DATA_COUNT; step++)
            {
                // ミニバッチを用意
                for (int i = 0; i < BATCH_SIZE; i++)
                {
                    // 0 ~ 訓練データサイズ-1 の中からランダムで整数を取得
                    int index = Mother.Dice.Next(trainData.Length);
                    // trainData(NdArray[])を、batchData(NdArray)の形にコピー
                    Array.Copy(trainData[index].Data, 0, batchData.Data, i * batchData.Length, batchData.Length);
                    batchLabel.Data[i] = trainLabel[index].Data[0];
                }

                // 学習(順伝播、誤差の計算、逆伝播、更新)
                NdArray[] output = nn.Forward(batchData);
                Real      loss   = lossFunction.Evaluate(output, batchLabel);
                nn.Backward(output);
                nn.Update();
            }

            // 認識率(accuracy)の計算
            // テストデータの回数データを回す
            Real accuracy = 0;
            for (int i = 0; i < TEST_DATA_LENGTH * 2; i++)
            {
                NdArray[] output = nn.Predict(testData[i]);
                // 出力outputと正解の誤差が0.5以下(正解が0のときにoutput<0.5、正解が1のときにoutput>0.5)
                // の際に正確に認識したとする
                if (Math.Abs(output[0].Data[0] - trainLabel[i].Data[0]) < 0.5)
                {
                    accuracy += 1;
                }
                accuracy /= TEST_DATA_LENGTH * 2.0;
                Console.WriteLine("Epoch:" + epoch + "accuracy:" + accuracy);
            }
        }
    }
Example #14
0
        public static void Run()
        {
            // Prepare MNIST data
            RILogManager.Default?.SendDebug("MNIST Data Loading...");
            MnistData mnistData = new MnistData(28);

            RILogManager.Default?.SendDebug("Training Start...");

            // Write the network configuration in FunctionStack
            FunctionStack Layer1 = new FunctionStack("Test12 Layer 1",
                                                     new Linear(true, 28 * 28, 256, name: "l1 Linear"),
                                                     new BatchNormalization(true, 256, name: "l1 Norm"),
                                                     new ReLU(name: "l1 ReLU")
                                                     );

            FunctionStack Layer2 = new FunctionStack("Test12 Layer 2",
                                                     new Linear(true, 256, 256, name: "l2 Linear"),
                                                     new BatchNormalization(true, 256, name: "l2 Norm"),
                                                     new ReLU(name: "l2 ReLU")
                                                     );

            FunctionStack Layer3 = new FunctionStack("Test12 Layer 3",
                                                     new Linear(true, 256, 256, name: "l3 Linear"),
                                                     new BatchNormalization(true, 256, name: "l3 Norm"),
                                                     new ReLU(name: "l3 ReLU")
                                                     );

            FunctionStack Layer4 = new FunctionStack("Test12 Layer 4",
                                                     new Linear(true, 256, 10, name: "l4 Linear")
                                                     );

            // Function stack itself is also stacked as Function
            FunctionStack nn = new FunctionStack
                                   ("Test12",
                                   Layer1,
                                   Layer2,
                                   Layer3,
                                   Layer4
                                   );

            FunctionStack cDNI1 = new FunctionStack("Test12 DNI 1",
                                                    new Linear(true, 256 + 10, 1024, name: "cDNI1 Linear1"),
                                                    new BatchNormalization(true, 1024, name: "cDNI1 Norm1"),
                                                    new ReLU(name: "cDNI1 ReLU1"),
                                                    new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                                                    );

            FunctionStack cDNI2 = new FunctionStack("Test12 DNI 2",
                                                    new Linear(true, 256 + 10, 1024, name: "cDNI2 Linear1"),
                                                    new BatchNormalization(true, 1024, name: "cDNI2 Norm1"),
                                                    new ReLU(name: "cDNI2 ReLU1"),
                                                    new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "cDNI2 Linear3")
                                                    );

            FunctionStack cDNI3 = new FunctionStack("Test12 DNI 3",
                                                    new Linear(true, 256 + 10, 1024, name: "cDNI3 Linear1"),
                                                    new BatchNormalization(true, 1024, name: "cDNI3 Norm1"),
                                                    new ReLU(name: "cDNI3 ReLU1"),
                                                    new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "cDNI3 Linear3")
                                                    );

            Layer1.SetOptimizer(new Adam("Adam", 0.00003f));
            Layer2.SetOptimizer(new Adam("Adam", 0.00003f));
            Layer3.SetOptimizer(new Adam("Adam", 0.00003f));
            Layer4.SetOptimizer(new Adam("Adam", 0.00003f));

            cDNI1.SetOptimizer(new Adam("Adam", 0.00003f));
            cDNI2.SetOptimizer(new Adam("Adam", 0.00003f));
            cDNI3.SetOptimizer(new Adam("Adam", 0.00003f));

            // Describe each function stack;
            RILogManager.Default?.SendDebug(Layer1.Describe());
            RILogManager.Default?.SendDebug(Layer2.Describe());
            RILogManager.Default?.SendDebug(Layer3.Describe());
            RILogManager.Default?.SendDebug(Layer4.Describe());

            RILogManager.Default?.SendDebug(cDNI1.Describe());
            RILogManager.Default?.SendDebug(cDNI2.Describe());
            RILogManager.Default?.SendDebug(cDNI3.Describe());

            for (int epoch = 0; epoch < 10; epoch++)
            {
                // Total error in the whole
                Real totalLoss      = 0;
                Real cDNI1totalLoss = 0;
                Real cDNI2totalLoss = 0;
                Real cDNI3totalLoss = 0;

                long totalLossCount      = 0;
                long cDNI1totalLossCount = 0;
                long cDNI2totalLossCount = 0;
                long cDNI3totalLossCount = 0;


                // how many times to run the batch
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    RILogManager.Default?.SendDebug("epoch: " + (epoch + 1) + " of 10, batch iteration: " + i + " of " + TRAIN_DATA_COUNT);
                    RILogManager.Default?.ViewerSendWatch("Epoch", epoch + 1);
                    RILogManager.Default?.ViewerSendWatch("Batch Iteration", i);

                    // Get data randomly from the training data
                    TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT, 28, 28);

                    // Run first tier
                    NdArray[]     layer1ForwardResult = Layer1.Forward(true, datasetX.Data);
                    ResultDataSet layer1ResultDataSet = new ResultDataSet(layer1ForwardResult, datasetX.Label);

                    // Obtain the slope of the first layer
                    NdArray[] cDNI1Result = cDNI1.Forward(true, layer1ResultDataSet.GetTrainData());

                    // Apply the slope of the first layer
                    layer1ForwardResult[0].Grad = cDNI1Result[0].Data.ToArray();

                    //Update first layer
                    Layer1.Backward(true, layer1ForwardResult);
                    layer1ForwardResult[0].ParentFunc = null;
                    Layer1.Update();

                    // Run Layer 2
                    NdArray[]     layer2ForwardResult = Layer2.Forward(true, layer1ResultDataSet.Result);
                    ResultDataSet layer2ResultDataSet = new ResultDataSet(layer2ForwardResult, layer1ResultDataSet.Label);

                    // Get the inclination of the second layer
                    NdArray[] cDNI2Result = cDNI2.Forward(true, layer2ResultDataSet.GetTrainData());

                    // Apply the slope of the second layer
                    layer2ForwardResult[0].Grad = cDNI2Result[0].Data.ToArray();

                    //Update layer 2
                    Layer2.Backward(true, layer2ForwardResult);
                    layer2ForwardResult[0].ParentFunc = null;


                    //Perform learning of first layer cDNI
                    Real cDNI1loss = new MeanSquaredError().Evaluate(cDNI1Result, new NdArray(layer1ResultDataSet.Result[0].Grad, cDNI1Result[0].Shape, cDNI1Result[0].BatchCount));

                    Layer2.Update();

                    cDNI1.Backward(true, cDNI1Result);
                    cDNI1.Update();

                    cDNI1totalLoss += cDNI1loss;
                    cDNI1totalLossCount++;

                    //Run Third Tier
                    NdArray[]     layer3ForwardResult = Layer3.Forward(true, layer2ResultDataSet.Result);
                    ResultDataSet layer3ResultDataSet = new ResultDataSet(layer3ForwardResult, layer2ResultDataSet.Label);

                    //Get the inclination of the third layer
                    NdArray[] cDNI3Result = cDNI3.Forward(true, layer3ResultDataSet.GetTrainData());

                    //Apply the inclination of the third layer
                    layer3ForwardResult[0].Grad = cDNI3Result[0].Data.ToArray();

                    //Update third layer
                    Layer3.Backward(true, layer3ForwardResult);
                    layer3ForwardResult[0].ParentFunc = null;

                    //Perform learning of cDNI for layer 2
                    Real cDNI2loss = new MeanSquaredError().Evaluate(cDNI2Result, new NdArray(layer2ResultDataSet.Result[0].Grad, cDNI2Result[0].Shape, cDNI2Result[0].BatchCount));

                    Layer3.Update();

                    cDNI2.Backward(true, cDNI2Result);
                    cDNI2.Update();

                    cDNI2totalLoss += cDNI2loss;
                    cDNI2totalLossCount++;

                    NdArray[] layer4ForwardResult = Layer4.Forward(true, layer3ResultDataSet.Result);
                    Real      sumLoss             = new SoftmaxCrossEntropy().Evaluate(layer4ForwardResult, layer3ResultDataSet.Label);
                    Layer4.Backward(true, layer4ForwardResult);
                    layer4ForwardResult[0].ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    Real cDNI3loss = new MeanSquaredError().Evaluate(cDNI3Result, new NdArray(layer3ResultDataSet.Result[0].Grad, cDNI3Result[0].Shape, cDNI3Result[0].BatchCount));

                    Layer4.Update();

                    cDNI3.Backward(true, cDNI3Result);
                    cDNI3.Update();

                    cDNI3totalLoss += cDNI3loss;
                    cDNI3totalLossCount++;

                    RILogManager.Default?.SendDebug("\nbatch count " + i + "/" + TRAIN_DATA_COUNT);
                    RILogManager.Default?.SendDebug("total loss " + totalLoss / totalLossCount);
                    RILogManager.Default?.SendDebug("local loss " + sumLoss);

                    RILogManager.Default?.SendDebug("\ncDNI1 total loss " + cDNI1totalLoss / cDNI1totalLossCount);
                    RILogManager.Default?.SendDebug("cDNI2 total loss " + cDNI2totalLoss / cDNI2totalLossCount);
                    RILogManager.Default?.SendDebug("cDNI3 total loss " + cDNI3totalLoss / cDNI3totalLossCount);

                    RILogManager.Default?.SendDebug("\ncDNI1 local loss " + cDNI1loss);
                    RILogManager.Default?.SendDebug("cDNI2 local loss " + cDNI2loss);
                    RILogManager.Default?.SendDebug("cDNI3 local loss " + cDNI3loss);

                    if (i % 20 == 0)
                    {
                        RILogManager.Default?.SendDebug("\nTesting...");
                        TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT, 28);
                        Real        accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        RILogManager.Default?.SendDebug("accuracy " + accuracy);
                    }
                }
            }
        }
Example #15
0
        public static void Run()
        {
            Console.WriteLine("Build Vocabulary.");

            Vocabulary vocabulary = new Vocabulary();

            string trainPath = InternetFileDownloader.Donwload(DOWNLOAD_URL + TRAIN_FILE, TRAIN_FILE, TRAIN_FILE_HASH);
            string validPath = InternetFileDownloader.Donwload(DOWNLOAD_URL + VALID_FILE, VALID_FILE, VALID_FILE_HASH);
            string testPath  = InternetFileDownloader.Donwload(DOWNLOAD_URL + TEST_FILE, TEST_FILE, TEST_FILE_HASH);

            int[] trainData = vocabulary.LoadData(trainPath);
            int[] validData = vocabulary.LoadData(validPath);
            int[] testData  = vocabulary.LoadData(testPath);

            int nVocab = vocabulary.Length;

            Console.WriteLine("Network Initilizing.");
            FunctionStack <Real> model = new FunctionStack <Real>(
                new EmbedID <Real>(nVocab, N_UNITS, name: "l1 EmbedID"),
                new Dropout <Real>(),
                new LSTM <Real>(N_UNITS, N_UNITS, name: "l2 LSTM"),
                new Dropout <Real>(),
                new LSTM <Real>(N_UNITS, N_UNITS, name: "l3 LSTM"),
                new Dropout <Real>(),
                new Linear <Real>(N_UNITS, nVocab, name: "l4 Linear")
                );

            for (int i = 0; i < model.Functions.Length; i++)
            {
                for (int j = 0; j < model.Functions[i].Parameters.Length; j++)
                {
                    for (int k = 0; k < model.Functions[i].Parameters[j].Data.Length; k++)
                    {
                        model.Functions[i].Parameters[j].Data[k] = ((Real)Mother.Dice.NextDouble() * 2.0f - 1.0f) / 10.0f;
                    }
                }
            }

            //与えられたthresholdで頭打ちではなく、全パラメータのL2Normからレートを取り補正を行う
            GradientClipping <Real> gradientClipping = new GradientClipping <Real>(threshold: GRAD_CLIP);
            SGD <Real> sgd = new SGD <Real>(learningRate: 0.1f);

            gradientClipping.SetUp(model);
            sgd.SetUp(model);

            Real wholeLen = trainData.Length;
            int  jump     = (int)Math.Floor(wholeLen / BATCH_SIZE);
            int  epoch    = 0;

            Console.WriteLine("Train Start.");

            for (int i = 0; i < jump * N_EPOCH; i++)
            {
                NdArray <Real> x = new NdArray <Real>(new[] { 1 }, BATCH_SIZE);
                NdArray <int>  t = new NdArray <int>(new[] { 1 }, BATCH_SIZE);

                for (int j = 0; j < BATCH_SIZE; j++)
                {
                    x.Data[j] = trainData[(int)((jump * j + i) % wholeLen)];
                    t.Data[j] = trainData[(int)((jump * j + i + 1) % wholeLen)];
                }

                NdArray <Real> result  = model.Forward(x)[0];
                Real           sumLoss = new SoftmaxCrossEntropy <Real>().Evaluate(result, t);
                Console.WriteLine("[{0}/{1}] Loss: {2}", i + 1, jump, sumLoss);
                model.Backward(result);

                //Run truncated BPTT
                if ((i + 1) % BPROP_LEN == 0)
                {
                    gradientClipping.Update();
                    sgd.Update();
                    model.ResetState();
                }

                if ((i + 1) % jump == 0)
                {
                    epoch++;
                    Console.WriteLine("evaluate");
                    Console.WriteLine("validation perplexity: {0}", Evaluate(model, validData));

                    if (epoch >= 6)
                    {
                        sgd.LearningRate /= 1.2f;
                        Console.WriteLine("learning rate =" + sgd.LearningRate);
                    }
                }
            }

            Console.WriteLine("test start");
            Console.WriteLine("test perplexity:" + Evaluate(model, testData));
        }
Example #16
0
        public static void Run()
        {
            //MNISTのデータを用意する
            Console.WriteLine("MNIST Data Loading...");
            MnistData mnistData = new MnistData();


            Console.WriteLine("Training Start...");

            //ネットワークの構成を FunctionStack に書き連ねる
            FunctionStack Layer1 = new FunctionStack(
                new Linear(28 * 28, 256, name: "l1 Linear"),
                new BatchNormalization(256, name: "l1 Norm"),
                new ReLU(name: "l1 ReLU")
                );

            FunctionStack Layer2 = new FunctionStack(
                new Linear(256, 256, name: "l2 Linear"),
                new BatchNormalization(256, name: "l2 Norm"),
                new ReLU(name: "l2 ReLU")
                );

            FunctionStack Layer3 = new FunctionStack(
                new Linear(256, 256, name: "l3 Linear"),
                new BatchNormalization(256, name: "l3 Norm"),
                new ReLU(name: "l3 ReLU")
                );

            FunctionStack Layer4 = new FunctionStack(
                new Linear(256, 10, name: "l4 Linear")
                );

            //FunctionStack自身もFunctionとして積み上げられる
            FunctionStack nn = new FunctionStack
                               (
                Layer1,
                Layer2,
                Layer3,
                Layer4
                               );

            FunctionStack DNI1 = new FunctionStack(
                new Linear(256, 1024, name: "DNI1 Linear1"),
                new BatchNormalization(1024, name: "DNI1 Nrom1"),
                new ReLU(name: "DNI1 ReLU1"),
                new Linear(1024, 1024, name: "DNI1 Linear2"),
                new BatchNormalization(1024, name: "DNI1 Nrom2"),
                new ReLU(name: "DNI1 ReLU2"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                );

            FunctionStack DNI2 = new FunctionStack(
                new Linear(256, 1024, name: "DNI2 Linear1"),
                new BatchNormalization(1024, name: "DNI2 Nrom1"),
                new ReLU(name: "DNI2 ReLU1"),
                new Linear(1024, 1024, name: "DNI2 Linear2"),
                new BatchNormalization(1024, name: "DNI2 Nrom2"),
                new ReLU(name: "DNI2 ReLU2"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "DNI2 Linear3")
                );

            FunctionStack DNI3 = new FunctionStack(
                new Linear(256, 1024, name: "DNI3 Linear1"),
                new BatchNormalization(1024, name: "DNI3 Nrom1"),
                new ReLU(name: "DNI3 ReLU1"),
                new Linear(1024, 1024, name: "DNI3 Linear2"),
                new BatchNormalization(1024, name: "DNI3 Nrom2"),
                new ReLU(name: "DNI3 ReLU2"),
                new Linear(1024, 256, initialW: new Real[1024, 256], name: "DNI3 Linear3")
                );

            //optimizerを宣言
            Layer1.SetOptimizer(new Adam());
            Layer2.SetOptimizer(new Adam());
            Layer3.SetOptimizer(new Adam());
            Layer4.SetOptimizer(new Adam());

            DNI1.SetOptimizer(new Adam());
            DNI2.SetOptimizer(new Adam());
            DNI3.SetOptimizer(new Adam());

            //三世代学習
            for (int epoch = 0; epoch < 20; epoch++)
            {
                Console.WriteLine("epoch " + (epoch + 1));

                Real totalLoss     = 0;
                Real DNI1totalLoss = 0;
                Real DNI2totalLoss = 0;
                Real DNI3totalLoss = 0;

                long totalLossCount     = 0;
                long DNI1totalLossCount = 0;
                long DNI2totalLossCount = 0;
                long DNI3totalLossCount = 0;

                //何回バッチを実行するか
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    //訓練データからランダムにデータを取得
                    TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT);

                    //第一層を実行
                    NdArray[] layer1ForwardResult = Layer1.Forward(datasetX.Data);

                    //第一層の傾きを取得
                    NdArray[] DNI1Result = DNI1.Forward(layer1ForwardResult);

                    //第一層の傾きを適用
                    layer1ForwardResult[0].Grad = DNI1Result[0].Data.ToArray();

                    //第一層を更新
                    Layer1.Backward(layer1ForwardResult);
                    layer1ForwardResult[0].ParentFunc = null; //Backwardを実行したので計算グラフを切っておく
                    Layer1.Update();

                    //第二層を実行
                    NdArray[] layer2ForwardResult = Layer2.Forward(layer1ForwardResult);

                    //第二層の傾きを取得
                    NdArray[] DNI2Result = DNI2.Forward(layer2ForwardResult);

                    //第二層の傾きを適用
                    layer2ForwardResult[0].Grad = DNI2Result[0].Data.ToArray();

                    //第二層を更新
                    Layer2.Backward(layer2ForwardResult);
                    layer2ForwardResult[0].ParentFunc = null;

                    //第一層用のDNIの学習を実行
                    Real DNI1loss = new MeanSquaredError().Evaluate(DNI1Result, new NdArray(layer1ForwardResult[0].Grad, DNI1Result[0].Shape, DNI1Result[0].BatchCount));

                    Layer2.Update();

                    DNI1.Backward(DNI1Result);
                    DNI1.Update();

                    DNI1totalLoss += DNI1loss;
                    DNI1totalLossCount++;

                    //第三層を実行
                    NdArray[] layer3ForwardResult = Layer3.Forward(layer2ForwardResult);

                    //第三層の傾きを取得
                    NdArray[] DNI3Result = DNI3.Forward(layer3ForwardResult);

                    //第三層の傾きを適用
                    layer3ForwardResult[0].Grad = DNI3Result[0].Data.ToArray();

                    //第三層を更新
                    Layer3.Backward(layer3ForwardResult);
                    layer3ForwardResult[0].ParentFunc = null;

                    //第二層用のDNIの学習を実行
                    Real DNI2loss = new MeanSquaredError().Evaluate(DNI2Result, new NdArray(layer2ForwardResult[0].Grad, DNI2Result[0].Shape, DNI2Result[0].BatchCount));

                    Layer3.Update();

                    DNI2.Backward(DNI2Result);
                    DNI2.Update();

                    DNI2totalLoss += DNI2loss;
                    DNI2totalLossCount++;

                    //第四層を実行
                    NdArray[] layer4ForwardResult = Layer4.Forward(layer3ForwardResult);

                    //第四層の傾きを取得
                    Real sumLoss = new SoftmaxCrossEntropy().Evaluate(layer4ForwardResult, datasetX.Label);

                    //第四層を更新
                    Layer4.Backward(layer4ForwardResult);
                    layer4ForwardResult[0].ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    //第三層用のDNIの学習を実行
                    Real DNI3loss = new MeanSquaredError().Evaluate(DNI3Result, new NdArray(layer3ForwardResult[0].Grad, DNI3Result[0].Shape, DNI3Result[0].BatchCount));

                    Layer4.Update();

                    DNI3.Backward(DNI3Result);
                    DNI3.Update();

                    DNI3totalLoss += DNI3loss;
                    DNI3totalLossCount++;

                    Console.WriteLine("\nbatch count " + i + "/" + TRAIN_DATA_COUNT);
                    //結果出力
                    Console.WriteLine("total loss " + totalLoss / totalLossCount);
                    Console.WriteLine("local loss " + sumLoss);

                    Console.WriteLine("\nDNI1 total loss " + DNI1totalLoss / DNI1totalLossCount);
                    Console.WriteLine("DNI2 total loss " + DNI2totalLoss / DNI2totalLossCount);
                    Console.WriteLine("DNI3 total loss " + DNI3totalLoss / DNI3totalLossCount);

                    Console.WriteLine("\nDNI1 local loss " + DNI1loss);
                    Console.WriteLine("DNI2 local loss " + DNI2loss);
                    Console.WriteLine("DNI3 local loss " + DNI3loss);

                    //20回バッチを動かしたら精度をテストする
                    if (i % 20 == 0)
                    {
                        Console.WriteLine("\nTesting...");

                        //テストデータからランダムにデータを取得
                        TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT);

                        //テストを実行
                        Real accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        Console.WriteLine("accuracy " + accuracy);
                    }
                }
            }
        }
Example #17
0
        const Real L2_SCALE = 1e-4f;             //l2 loss scale

        public static void Run()
        {
            //MNISTのデータを用意する
            Console.WriteLine("MNIST data loading...");
            MnistData <Real> mnistData = new MnistData <Real>();

            //テストデータから全データを取得
            TestDataSet <Real> datasetY = mnistData.Eval.GetAllDataSet();

            Console.WriteLine("\nNetwork initializing...");

            int numBatches    = mnistData.Train.Length / BATCH_SIZE; // 600 = 60000 / 100
            int batchPerEpoch = mnistData.Train.Length / BATCH_SIZE;

            int[] boundaries = { LR_DROP_EPOCH *batchPerEpoch, (LR_DROP_EPOCH + 20) * batchPerEpoch };

            Dictionary <string, Real> customSparsities = new Dictionary <string, Real>
            {
                { "layer2", END_SPARSITY *SPARSITY_SCALE },
                { "layer3", END_SPARSITY * 0 }
            };

            MaskedLinear <Real> layer1 = new MaskedLinear <Real>(28 * 28, 300, name: "layer1", gpuEnable: true);
            MaskedLinear <Real> layer2 = new MaskedLinear <Real>(300, 100, name: "layer2", gpuEnable: true);
            MaskedLinear <Real> layer3 = new MaskedLinear <Real>(100, 10, name: "layer3", gpuEnable: true);

            //ネットワークの構成を FunctionStack に書き連ねる
            FunctionStack <Real> nn = new FunctionStack <Real>(
                layer1,
                new ReLU <Real>(name: "l1 ReLU"),
                layer2,
                new ReLU <Real>(name: "l2 ReLU"),
                layer3
                );

            SoftmaxCrossEntropy <Real> sce = new SoftmaxCrossEntropy <Real>();

            WeightDecay <Real> weightDecay = new WeightDecay <Real>(L2_SCALE);

            weightDecay.AddParameters(layer1.Weight, layer2.Weight, layer3.Weight);

            MomentumSGD <Real> mSGD = new MomentumSGD <Real>(LEARNING_RATE);

            mSGD.SetUp(nn);

            var opt = new SparseRigLOptimizer(mSGD, MASKUPDATE_BEGIN_STEP, MASKUPDATE_END_STEP, MASKUPDATE_FREQUENCY, DROP_FRACTION, "cosine", "zeros", RIGL_ACC_SCALE);

            NdArray <Real>[] allMasks =
            {
                layer1.Mask,
                layer2.Mask,
                layer3.Mask,
            };

            string[] LayerNames =
            {
                layer1.Name,
                layer2.Name,
                layer3.Name,
            };

            NdArray <Real>[] allWights =
            {
                layer1.Weight,
                layer2.Weight,
                layer3.Weight,
            };

            //マスクの初期化
            SparseUtils.MaskInit(allMasks, LayerNames, "erdos_renyi", END_SPARSITY, customSparsities);

            Console.WriteLine("[Global sparsity] " + SparseUtils.CalculateSparsity(allMasks));
            var weightSparsity = GetWeightSparsity(allMasks);

            Console.WriteLine("[Sparsity] Layer0, Layer1 : " + weightSparsity[0] + ", " + weightSparsity[1]);

            Console.WriteLine("\nTraining Start...");

            //学習開始
            for (int i = 0; i < NUM_EPOCHS * numBatches; i++)
            {
                //訓練データからランダムにデータを取得
                TestDataSet <Real> datasetX = mnistData.Train.GetRandomDataSet(BATCH_SIZE);

                //バッチ学習を実行する
                NdArray <Real> y    = nn.Forward(datasetX.Data)[0];
                Real           loss = sce.Evaluate(y, datasetX.Label);
                nn.Backward(y);

                weightDecay.Update();
                opt._optimizer.LearningRate = PiecewiseConstant(opt._optimizer.UpdateCount, boundaries, LEARNING_RATE);

                opt.condMaskUpdate(allMasks, allWights);

                ////10回毎に結果出力
                //if (i % 10 + 1 == 10)
                //{
                //    Console.WriteLine("\nbatch count:" + (i + 1) + " (lr:" + opt._optimizer.LearningRate + ")");
                //    Console.WriteLine("loss " + loss);
                //}

                //精度をテストする
                if (i % numBatches + 1 == numBatches)
                {
                    Console.WriteLine("\nEpoch:" + Math.Floor((i + 1) / (Real)numBatches) + " Iteration:" + (i + 1) + " Testing... ");

                    //テストを実行
                    Real accuracy = Trainer.Accuracy(nn, datasetY, new SoftmaxCrossEntropy <Real>(), out loss);

                    Console.WriteLine("loss: " + loss);
                    Console.WriteLine("accuracy: " + accuracy);
                }
            }
        }
Example #18
0
        public static void Run()
        {
            // Prepare MNIST data
            RILogManager.Default?.SendDebug("MNIST Data Loading...");
            MnistData mnistData = new MnistData(28);

            RILogManager.Default?.SendDebug("Training Start...");

            // Write the network configuration in FunctionStack
            FunctionStack Layer1 = new FunctionStack("Test11 Layer 1",
                                                     new Linear(true, 28 * 28, 256, name: "l1 Linear"),
                                                     new BatchNormalization(true, 256, name: "l1 Norm"),
                                                     new ReLU(name: "l1 ReLU")
                                                     );

            FunctionStack Layer2 = new FunctionStack("Test11 Layer 2",
                                                     new Linear(true, 256, 256, name: "l2 Linear"),
                                                     new BatchNormalization(true, 256, name: "l2 Norm"),
                                                     new ReLU(name: "l2 ReLU")
                                                     );

            FunctionStack Layer3 = new FunctionStack("Test11 Layer 3",
                                                     new Linear(true, 256, 256, name: "l3 Linear"),
                                                     new BatchNormalization(true, 256, name: "l3 Norm"),
                                                     new ReLU(name: "l3 ReLU")
                                                     );

            FunctionStack Layer4 = new FunctionStack("Test11 Layer 4",
                                                     new Linear(true, 256, 10, name: "l4 Linear")
                                                     );

            // Function stack itself is also stacked as Function
            FunctionStack nn = new FunctionStack
                                   ("Test11",
                                   Layer1,
                                   Layer2,
                                   Layer3,
                                   Layer4
                                   );

            FunctionStack DNI1 = new FunctionStack("Test11 DNI1",
                                                   new Linear(true, 256, 1024, name: "DNI1 Linear1"),
                                                   new BatchNormalization(true, 1024, name: "DNI1 Norm1"),
                                                   new ReLU(name: "DNI1 ReLU1"),
                                                   new Linear(true, 1024, 1024, name: "DNI1 Linear2"),
                                                   new BatchNormalization(true, 1024, name: "DNI1 Norm2"),
                                                   new ReLU(name: "DNI1 ReLU2"),
                                                   new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "DNI1 Linear3")
                                                   );

            FunctionStack DNI2 = new FunctionStack("Test11 DNI2",
                                                   new Linear(true, 256, 1024, name: "DNI2 Linear1"),
                                                   new BatchNormalization(true, 1024, name: "DNI2 Norm1"),
                                                   new ReLU(name: "DNI2 ReLU1"),
                                                   new Linear(true, 1024, 1024, name: "DNI2 Linear2"),
                                                   new BatchNormalization(true, 1024, name: "DNI2 Norm2"),
                                                   new ReLU(name: "DNI2 ReLU2"),
                                                   new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "DNI2 Linear3")
                                                   );

            FunctionStack DNI3 = new FunctionStack("Test11 DNI3",
                                                   new Linear(true, 256, 1024, name: "DNI3 Linear1"),
                                                   new BatchNormalization(true, 1024, name: "DNI3 Norm1"),
                                                   new ReLU(name: "DNI3 ReLU1"),
                                                   new Linear(true, 1024, 1024, name: "DNI3 Linear2"),
                                                   new BatchNormalization(true, 1024, name: "DNI3 Norm2"),
                                                   new ReLU(name: "DNI3 ReLU2"),
                                                   new Linear(true, 1024, 256, initialW: new Real[1024, 256], name: "DNI3 Linear3")
                                                   );

            //optimizer
            Layer1.SetOptimizer(new Adam());
            Layer2.SetOptimizer(new Adam());
            Layer3.SetOptimizer(new Adam());
            Layer4.SetOptimizer(new Adam());
            DNI1.SetOptimizer(new Adam());
            DNI2.SetOptimizer(new Adam());
            DNI3.SetOptimizer(new Adam());

            // Three generations learning
            for (int epoch = 0; epoch < 20; epoch++)
            {
                RILogManager.Default?.SendDebug("epoch " + (epoch + 1));

                Real totalLoss     = 0;
                Real DNI1totalLoss = 0;
                Real DNI2totalLoss = 0;
                Real DNI3totalLoss = 0;

                long totalLossCount     = 0;
                long DNI1totalLossCount = 0;
                long DNI2totalLossCount = 0;
                long DNI3totalLossCount = 0;

                // how many times to run the batch
                for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++)
                {
                    // Get data randomly from the training data
                    TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT, 28, 28);

                    // Run first tier
                    NdArray[] layer1ForwardResult = Layer1.Forward(true, datasetX.Data);

                    // Obtain the slope of the first layer
                    NdArray[] DNI1Result = DNI1.Forward(true, layer1ForwardResult);

                    // Apply the slope of the first layer
                    layer1ForwardResult[0].Grad = DNI1Result[0].Data.ToArray();

                    // Update first layer
                    Layer1.Backward(true, layer1ForwardResult);
                    layer1ForwardResult[0].ParentFunc = null; // Backward was executed and cut off calculation graph
                    Layer1.Update();

                    // Run Layer 2
                    NdArray[] layer2ForwardResult = Layer2.Forward(true, layer1ForwardResult);

                    // Get the inclination of the second layer
                    NdArray[] DNI2Result = DNI2.Forward(true, layer2ForwardResult);

                    // Apply the slope of the second layer
                    layer2ForwardResult[0].Grad = DNI2Result[0].Data.ToArray();

                    // Update layer 2
                    Layer2.Backward(true, layer2ForwardResult);
                    layer2ForwardResult[0].ParentFunc = null;

                    // Learn DNI for first tier
                    Real DNI1loss = new MeanSquaredError().Evaluate(DNI1Result, new NdArray(layer1ForwardResult[0].Grad, DNI1Result[0].Shape, DNI1Result[0].BatchCount));

                    Layer2.Update();

                    DNI1.Backward(true, DNI1Result);
                    DNI1.Update();

                    DNI1totalLoss += DNI1loss;
                    DNI1totalLossCount++;

                    // run layer 3
                    NdArray[] layer3ForwardResult = Layer3.Forward(true, layer2ForwardResult);

                    // Get the inclination of the third layer
                    NdArray[] DNI3Result = DNI3.Forward(true, layer3ForwardResult);

                    // Apply the slope of the third layer
                    layer3ForwardResult[0].Grad = DNI3Result[0].Data.ToArray();

                    // Update layer 3
                    Layer3.Backward(true, layer3ForwardResult);
                    layer3ForwardResult[0].ParentFunc = null;

                    // Run DNI learning for layer 2
                    Real DNI2loss = new MeanSquaredError().Evaluate(DNI2Result, new NdArray(layer2ForwardResult[0].Grad, DNI2Result[0].Shape, DNI2Result[0].BatchCount));

                    Layer3.Update();

                    DNI2.Backward(true, DNI2Result);
                    DNI2.Update();

                    DNI2totalLoss += DNI2loss;
                    DNI2totalLossCount++;

                    // run layer 4
                    NdArray[] layer4ForwardResult = Layer4.Forward(true, layer3ForwardResult);

                    // Obtain the slope of the fourth layer
                    Real sumLoss = new SoftmaxCrossEntropy().Evaluate(layer4ForwardResult, datasetX.Label);

                    // Update fourth layer
                    Layer4.Backward(true, layer4ForwardResult);
                    layer4ForwardResult[0].ParentFunc = null;

                    totalLoss += sumLoss;
                    totalLossCount++;

                    // Run DNI learning for layer 3
                    Real DNI3loss = new MeanSquaredError().Evaluate(DNI3Result, new NdArray(layer3ForwardResult[0].Grad, DNI3Result[0].Shape, DNI3Result[0].BatchCount));

                    Layer4.Update();

                    DNI3.Backward(true, DNI3Result);
                    DNI3.Update();

                    DNI3totalLoss += DNI3loss;
                    DNI3totalLossCount++;

                    RILogManager.Default?.SendDebug("batch count " + i + "/" + TRAIN_DATA_COUNT);
                    RILogManager.Default?.SendDebug("total loss " + totalLoss / totalLossCount);
                    RILogManager.Default?.SendDebug("local loss " + sumLoss);

                    RILogManager.Default?.SendDebug("DNI1 total loss " + DNI1totalLoss / DNI1totalLossCount);
                    RILogManager.Default?.SendDebug("DNI2 total loss " + DNI2totalLoss / DNI2totalLossCount);
                    RILogManager.Default?.SendDebug("DNI3 total loss " + DNI3totalLoss / DNI3totalLossCount);

                    RILogManager.Default?.SendDebug("DNI1 local loss " + DNI1loss);
                    RILogManager.Default?.SendDebug("DNI2 local loss " + DNI2loss);
                    RILogManager.Default?.SendDebug("DNI3 local loss " + DNI3loss);

                    // Test the accuracy if you move the batch 20 times
                    if (i % 20 == 0)
                    {
                        RILogManager.Default?.SendDebug("Testing...");

                        // Get data randomly from test data
                        TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT, 28);

                        // Run test
                        Real accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label);
                        RILogManager.Default?.SendDebug("accuracy " + accuracy);
                    }
                }
            }
        }