public void testIntArray()
        {
            DynamicIntArray dia = new DynamicIntArray(10);

            for (int i = 0; i < 10000; ++i)
            {
                dia.add(2 * i);
            }
            Assert.Equal(10000, dia.size());
            for (int i = 0; i < 10000; ++i)
            {
                Assert.Equal(2 * i, dia.get(i));
            }
            dia.clear();
            Assert.Equal(0, dia.size());
            dia.add(3);
            dia.add(12);
            dia.add(65);
            Assert.Equal("{3,12,65}", dia.ToString());
            for (int i = 0; i < 5; ++i)
            {
                dia.increment(i, 3);
            }
            Assert.Equal("{6,15,68,3,3}", dia.ToString());
        }
Example #2
0
		/// <summary> Main algorithm.  Descriptions see "Practical Optimization"
		/// 
		/// </summary>
		/// <param name="initX">initial point of x, assuming no value's on the bound!
		/// </param>
		/// <param name="constraints">the bound constraints of each variable
		/// constraints[0] is the lower bounds and 
		/// constraints[1] is the upper bounds
		/// </param>
		/// <returns> the solution of x, null if number of iterations not enough
		/// </returns>
		/// <exception cref="Exception">if an error occurs
		/// </exception>
		public virtual double[] findArgmin(double[] initX, double[][] constraints)
		{
			int l = initX.Length;
			
			// Initially all variables are free, all bounds are constraints of
			// non-working-set constraints
			bool[] isFixed = new bool[l];
			double[][] nwsBounds = new double[2][];
			for (int i = 0; i < 2; i++)
			{
				nwsBounds[i] = new double[l];
			}
			// Record indice of fixed variables, simply for efficiency
			DynamicIntArray wsBdsIndx = new DynamicIntArray(this, constraints.Length);
			// Vectors used to record the variable indices to be freed 	
			DynamicIntArray toFree = null, oldToFree = null;
			
			// Initial value of obj. function, gradient and inverse of the Hessian
			m_f = objectiveFunction(initX);
			if (System.Double.IsNaN(m_f))
				throw new System.Exception("Objective function value is NaN!");
			
			double sum = 0;
			double[] grad = evaluateGradient(initX), oldGrad, oldX, deltaGrad = new double[l], deltaX = new double[l], direct = new double[l], x = new double[l];
			Matrix L = new Matrix(l, l); // Lower triangle of Cholesky factor 
			double[] D = new double[l]; // Diagonal of Cholesky factor
			for (int i = 0; i < l; i++)
			{
				L.setRow(i, new double[l]);
				L.setXmlElement(i, i, 1.0);
				D[i] = 1.0;
				direct[i] = - grad[i];
				sum += grad[i] * grad[i];
				x[i] = initX[i];
				nwsBounds[0][i] = constraints[0][i];
				nwsBounds[1][i] = constraints[1][i];
				isFixed[i] = false;
			}
			double stpmax = m_STPMX * System.Math.Max(System.Math.Sqrt(sum), l);
			

iterates: 
			for (int step = 0; step < m_MAXITS; step++)
			{
				if (m_Debug)
					System.Console.Error.WriteLine("\nIteration # " + step + ":");
				
				// Try at most one feasible newton step, i.e. 0<lamda<=alpha
				oldX = x;
				oldGrad = grad;
				
				// Also update grad
				if (m_Debug)
					System.Console.Error.WriteLine("Line search ... ");
				m_IsZeroStep = false;
				x = lnsrch(x, grad, direct, stpmax, isFixed, nwsBounds, wsBdsIndx);
				if (m_Debug)
					System.Console.Error.WriteLine("Line search finished.");
				
				if (m_IsZeroStep)
				{
					// Zero step, simply delete rows/cols of D and L
					for (int f = 0; f < wsBdsIndx.size(); f++)
					{
						int idx = wsBdsIndx.elementAt(f);
						L.setRow(idx, new double[l]);
						L.setColumn(idx, new double[l]);
						D[idx] = 0.0;
					}
					grad = evaluateGradient(x);
					step--;
				}
				else
				{
					// Check converge on x
					bool finish = false;
					double test = 0.0;
					for (int h = 0; h < l; h++)
					{
						deltaX[h] = x[h] - oldX[h];
						double tmp = System.Math.Abs(deltaX[h]) / System.Math.Max(System.Math.Abs(x[h]), 1.0);
						if (tmp > test)
							test = tmp;
					}
					if (test < m_Zero)
					{
						if (m_Debug)
							System.Console.Error.WriteLine("\nDeltaX converge: " + test);
						finish = true;
					}
					
					// Check zero gradient	    
					grad = evaluateGradient(x);
					test = 0.0;
					double denom = 0.0, dxSq = 0.0, dgSq = 0.0, newlyBounded = 0.0;
					for (int g = 0; g < l; g++)
					{
						if (!isFixed[g])
						{
							deltaGrad[g] = grad[g] - oldGrad[g];
							// Calculate the denominators			    
							denom += deltaX[g] * deltaGrad[g];
							dxSq += deltaX[g] * deltaX[g];
							dgSq += deltaGrad[g] * deltaGrad[g];
						}
						// Only newly bounded variables will be non-zero
						else
							newlyBounded += deltaX[g] * (grad[g] - oldGrad[g]);
						
						// Note: CANNOT use projected gradient for testing 
						// convergence because of newly bounded variables
						double tmp = System.Math.Abs(grad[g]) * System.Math.Max(System.Math.Abs(direct[g]), 1.0) / System.Math.Max(System.Math.Abs(m_f), 1.0);
						if (tmp > test)
							test = tmp;
					}
					
					if (test < m_Zero)
					{
						if (m_Debug)
							System.Console.Error.WriteLine("Gradient converge: " + test);
						finish = true;
					}
					
					// dg'*dx could be < 0 using inexact lnsrch
					if (m_Debug)
						System.Console.Error.WriteLine("dg'*dx=" + (denom + newlyBounded));
					// dg'*dx = 0
					if (System.Math.Abs(denom + newlyBounded) < m_Zero)
						finish = true;
					
					int size = wsBdsIndx.size();
					bool isUpdate = true; // Whether to update BFGS formula	    
					// Converge: check whether release any current constraints
					if (finish)
					{
						if (m_Debug)
							System.Console.Error.WriteLine("Test any release possible ...");
						
						if (toFree != null)
							oldToFree = (DynamicIntArray) toFree.copy();
						toFree = new DynamicIntArray(this, wsBdsIndx.size());
						
						for (int m = size - 1; m >= 0; m--)
						{
							int index = wsBdsIndx.elementAt(m);
							double[] hessian = evaluateHessian(x, index);
							double deltaL = 0.0;
							if (hessian != null)
							{
								for (int mm = 0; mm < hessian.Length; mm++)
									if (!isFixed[mm])
									// Free variable
										deltaL += hessian[mm] * direct[mm];
							}
							
							// First and second order Lagrangian multiplier estimate
							// If user didn't provide Hessian, use first-order only
							double L1, L2;
							if (x[index] >= constraints[1][index])
							// Upper bound
								L1 = - grad[index];
							else if (x[index] <= constraints[0][index])
							// Lower bound
								L1 = grad[index];
							else
								throw new System.Exception("x[" + index + "] not fixed on the" + " bounds where it should have been!");
							
							// L2 = L1 + deltaL
							L2 = L1 + deltaL;
							if (m_Debug)
								System.Console.Error.WriteLine("Variable " + index + ": Lagrangian=" + L1 + "|" + L2);
							
							//Check validity of Lagrangian multiplier estimate
							bool isConverge = (2.0 * System.Math.Abs(deltaL)) < System.Math.Min(System.Math.Abs(L1), System.Math.Abs(L2));
							if ((L1 * L2 > 0.0) && isConverge)
							{
								//Same sign and converge: valid
								if (L2 < 0.0)
								{
									// Negative Lagrangian: feasible
									toFree.addElement(index);
									wsBdsIndx.removeElementAt(m);
									finish = false; // Not optimal, cannot finish
								}
							}
							
							// Although hardly happen, better check it
							// If the first-order Lagrangian multiplier estimate is wrong,
							// avoid zigzagging
							if ((hessian == null) && (toFree != null) && toFree.equal(oldToFree))
								finish = true;
						}
						
						if (finish)
						{
							// Min. found
							if (m_Debug)
								System.Console.Error.WriteLine("Minimum found.");
							m_f = objectiveFunction(x);
							if (System.Double.IsNaN(m_f))
								throw new System.Exception("Objective function value is NaN!");
							return x;
						}
						
						// Free some variables
						for (int mmm = 0; mmm < toFree.size(); mmm++)
						{
							int freeIndx = toFree.elementAt(mmm);
							isFixed[freeIndx] = false; // Free this variable
							if (x[freeIndx] <= constraints[0][freeIndx])
							{
								// Lower bound
								nwsBounds[0][freeIndx] = constraints[0][freeIndx];
								if (m_Debug)
									System.Console.Error.WriteLine("Free variable " + freeIndx + " from bound " + nwsBounds[0][freeIndx]);
							}
							else
							{
								// Upper bound
								nwsBounds[1][freeIndx] = constraints[1][freeIndx];
								if (m_Debug)
									System.Console.Error.WriteLine("Free variable " + freeIndx + " from bound " + nwsBounds[1][freeIndx]);
							}
							L.setXmlElement(freeIndx, freeIndx, 1.0);
							D[freeIndx] = 1.0;
							isUpdate = false;
						}
					}
					
					if (denom < System.Math.Max(m_Zero * System.Math.Sqrt(dxSq) * System.Math.Sqrt(dgSq), m_Zero))
					{
						if (m_Debug)
							System.Console.Error.WriteLine("dg'*dx negative!");
						isUpdate = false; // Do not update		    
					}
					// If Hessian will be positive definite, update it
					if (isUpdate)
					{
						
						// modify once: dg*dg'/(dg'*dx)	
						double coeff = 1.0 / denom; // 1/(dg'*dx)	
						updateCholeskyFactor(L, D, deltaGrad, coeff, isFixed);
						
						// modify twice: g*g'/(g'*p)	
						coeff = 1.0 / m_Slope; // 1/(g'*p)
						updateCholeskyFactor(L, D, oldGrad, coeff, isFixed);
					}
				}
				
				// Find new direction 
				Matrix LD = new Matrix(l, l); // L*D
				double[] b = new double[l];
				
				for (int k = 0; k < l; k++)
				{
					if (!isFixed[k])
						b[k] = - grad[k];
					else
						b[k] = 0.0;
					
					for (int j = k; j < l; j++)
					{
						// Lower triangle	
						if (!isFixed[j] && !isFixed[k])
							LD.setXmlElement(j, k, L.getXmlElement(j, k) * D[k]);
					}
				}
				
				// Solve (LD)*y = -g, where y=L'*direct
				double[] LDIR = solveTriangle(LD, b, true, isFixed);
				LD = null;
				
				for (int m = 0; m < LDIR.Length; m++)
				{
					if (System.Double.IsNaN(LDIR[m]))
						throw new System.Exception("L*direct[" + m + "] is NaN!" + "|-g=" + b[m] + "|" + isFixed[m] + "|diag=" + D[m]);
				}
				
				// Solve L'*direct = y
				direct = solveTriangle(L, LDIR, false, isFixed);
				for (int m = 0; m < direct.Length; m++)
				{
					if (System.Double.IsNaN(direct[m]))
						throw new System.Exception("direct is NaN!");
				}
				
				//System.gc();
			}
			
			if (m_Debug)
				System.Console.Error.WriteLine("Cannot find minimum" + " -- too many interations!");
			m_X = x;
			return null;
		}
Example #3
0
			/// <summary> Check whether the two integer vectors equal to each other
			/// Two integer vectors are equal if all the elements are the 
			/// same, regardless of the order of the elements
			/// 
			/// </summary>
			/// <param name="a">one integer vector
			/// </param>
			/// <param name="b">another integer vector
			/// </param>
			/// <returns> whether they are equal
			/// </returns>
			public bool equal(DynamicIntArray b)
			{
				if ((b == null) || (size() != b.size()))
					return false;
				
				int mysize = size();
				
				// Only values matter, order does not matter
				int[] sorta = Utils.sort(m_Objects), sortb = Utils.sort(b.m_Objects);
                for (int j = 0; j < mysize; j++)
					if (m_Objects[sorta[j]] != b.m_Objects[sortb[j]])
						return false;
				
				return true;
			}