public Detour.dtNavMeshQuery GetNavMeshQuery(uint mapId, uint instanceId, List <uint> swaps) { MMapData mmap = GetMMapData(mapId); if (mmap == null) { return(null); } if (!mmap.navMeshQueries.ContainsKey(instanceId)) { // allocate mesh query Detour.dtNavMeshQuery query = new Detour.dtNavMeshQuery(); if (Detour.dtStatusFailed(query.init(mmap.GetNavMesh(swaps), 1024))) { Log.outError(LogFilter.Maps, "MMAP:GetNavMeshQuery: Failed to initialize dtNavMeshQuery for mapId {0} instanceId {1}", mapId, instanceId); return(null); } Log.outInfo(LogFilter.Maps, "MMAP:GetNavMeshQuery: created dtNavMeshQuery for mapId {0} instanceId {1}", mapId, instanceId); mmap.navMeshQueries.Add(instanceId, query); } return(mmap.navMeshQueries[instanceId]); }
bool loadMapInstanceImpl(string basePath, uint mapId, uint instanceId) { if (!loadMapData(basePath, mapId)) { return(false); } MMapData mmap = loadedMMaps[mapId]; if (mmap.navMeshQueries.ContainsKey(instanceId)) { return(true); } // allocate mesh query Detour.dtNavMeshQuery query = new Detour.dtNavMeshQuery(); if (Detour.dtStatusFailed(query.init(mmap.navMesh, 1024))) { Log.outError(LogFilter.Maps, "MMAP.GetNavMeshQuery: Failed to initialize dtNavMeshQuery for mapId {0:D4} instanceId {1}", mapId, instanceId); return(false); } Log.outDebug(LogFilter.Maps, "MMAP.GetNavMeshQuery: created dtNavMeshQuery for mapId {0:D4} instanceId {1}", mapId, instanceId); mmap.navMeshQueries.Add(instanceId, query); return(true); }
public bool ComputeSystem(byte[] tileRawData, int start) { m_ctx.enableLog(true); m_ctx.resetTimers(); // Start the build process. m_ctx.startTimer(Recast.rcTimerLabel.RC_TIMER_TOTAL); m_rawTileData = new Detour.dtRawTileData(); m_rawTileData.FromBytes(tileRawData, start); m_navMesh = new Detour.dtNavMesh(); if (m_navMesh == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not create Detour navmesh"); return(false); } dtStatus status; status = m_navMesh.init(m_rawTileData, (int)Detour.dtTileFlags.DT_TILE_FREE_DATA); if (Detour.dtStatusFailed(status)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not init Detour navmesh"); return(false); } m_navQuery = new Detour.dtNavMeshQuery(); status = m_navQuery.init(m_navMesh, 2048); if (Detour.dtStatusFailed(status)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not init Detour navmesh query"); return(false); } m_ctx.stopTimer(Recast.rcTimerLabel.RC_TIMER_TOTAL); //m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, ">> Polymesh: " + m_pmesh.nverts + " vertices " + m_pmesh.npolys + " polygons"); m_totalBuildTimeMs = (float)m_ctx.getAccumulatedTime(Recast.rcTimerLabel.RC_TIMER_TOTAL); return(true); }
//Compute Recast and Detour navmesh public bool ComputeSystem() { ClearComputedData(); Recast.rcCalcBounds(m_verts, m_vertCount, m_bmin, m_bmax); // // Step 1. Initialize build config. // // Init build configuration from GUI m_cfg = new Recast.rcConfig(); m_cfg.cs = m_RecastMeshParams.m_cellSize; m_cfg.ch = m_RecastMeshParams.m_cellHeight; m_cfg.walkableSlopeAngle = m_RecastMeshParams.m_agentMaxSlope; m_cfg.walkableHeight = (int)Math.Ceiling(m_RecastMeshParams.m_agentHeight / m_cfg.ch); m_cfg.walkableClimb = (int)Math.Floor(m_RecastMeshParams.m_agentMaxClimb / m_cfg.ch); m_cfg.walkableRadius = (int)Math.Ceiling(m_RecastMeshParams.m_agentRadius / m_cfg.cs); m_cfg.maxEdgeLen = (int)(m_RecastMeshParams.m_edgeMaxLen / m_RecastMeshParams.m_cellSize); m_cfg.maxSimplificationError = m_RecastMeshParams.m_edgeMaxError; m_cfg.minRegionArea = (int)(m_RecastMeshParams.m_regionMinSize * m_RecastMeshParams.m_regionMinSize); // Note: area = size*size m_cfg.mergeRegionArea = (int)(m_RecastMeshParams.m_regionMergeSize * m_RecastMeshParams.m_regionMergeSize); // Note: area = size*size m_cfg.maxVertsPerPoly = (int)m_RecastMeshParams.m_vertsPerPoly; m_cfg.detailSampleDist = m_RecastMeshParams.m_detailSampleDist < 0.9f ? 0 : m_RecastMeshParams.m_cellSize * m_RecastMeshParams.m_detailSampleDist; m_cfg.detailSampleMaxError = m_RecastMeshParams.m_cellHeight * m_RecastMeshParams.m_detailSampleMaxError; // Set the area where the navigation will be build. // Here the bounds of the input mesh are used, but the // area could be specified by an user defined box, etc. Recast.rcVcopy(m_cfg.bmin, m_bmin); Recast.rcVcopy(m_cfg.bmax, m_bmax); Recast.rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, out m_cfg.width, out m_cfg.height); // Reset build times gathering. m_ctx.resetTimers(); // Start the build process. m_ctx.startTimer(Recast.rcTimerLabel.RC_TIMER_TOTAL); m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, "Building navigation:"); m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, " - " + m_cfg.width + " x " + m_cfg.height + " cells"); m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, " - " + m_vertCount / 1000.0f + "K verts, " + m_triCount / 1000.0f + "K tris"); // // Step 2. Rasterize input polygon soup. // // Allocate voxel heightfield where we rasterize our input data to. m_solid = new Recast.rcHeightfield(); if (m_solid == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return(false); } if (!Recast.rcCreateHeightfield(m_ctx, m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return(false); } // Allocate array that can hold triangle area types. // If you have multiple meshes you need to process, allocate // and array which can hold the max number of triangles you need to process. m_triareas = new byte[m_triCount]; if (m_triareas == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (" + m_triCount + ")."); return(false); } // Find triangles which are walkable based on their slope and rasterize them. // If your input data is multiple meshes, you can transform them here, calculate // the are type for each of the meshes and rasterize them. //memset(m_triareas, 0, ntris*sizeof(byte)); Recast.rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, m_verts, m_vertCount, m_tris, m_triCount, m_triareas); Recast.rcRasterizeTriangles(m_ctx, m_verts, m_vertCount, m_tris, m_triareas, m_triCount, m_solid, m_cfg.walkableClimb); if (!m_keepInterResults) { m_triareas = null; } // // Step 3. Filter walkables surfaces. // // Once all geoemtry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. Recast.rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, m_solid); Recast.rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, m_solid); Recast.rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, m_solid); // // Step 4. Partition walkable surface to simple regions. // // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = new Recast.rcCompactHeightfield(); if (m_chf == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return(false); } if (!Recast.rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, m_solid, m_chf)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return(false); } if (!m_keepInterResults) { m_solid = null; } // Erode the walkable area by agent radius. if (!Recast.rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, m_chf)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not erode."); return(false); } /* * // (Optional) Mark areas. * ConvexVolume[] vols = m_geom.getConvexVolumes(); * for (int i = 0; i < m_geom.getConvexVolumeCount(); ++i) * rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (byte)vols[i].area, *m_chf); */ if (m_RecastMeshParams.m_monotonePartitioning) { // Partition the walkable surface into simple regions without holes. // Monotone partitioning does not need distancefield. if (!Recast.rcBuildRegionsMonotone(m_ctx, m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build regions."); return(false); } } else { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!Recast.rcBuildDistanceField(m_ctx, m_chf)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return(false); } // Partition the walkable surface into simple regions without holes. if (!Recast.rcBuildRegions(m_ctx, m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build regions."); return(false); } } // // Step 5. Trace and simplify region contours. // // Create contours. m_cset = new Recast.rcContourSet(); if (m_cset == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'."); return(false); } if (!Recast.rcBuildContours(m_ctx, m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, m_cset, -1)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not create contours."); return(false); } //m_cset.dumpToTxt("Data/CSET_dump.txt"); // // Step 6. Build polygons mesh from contours. // // Build polygon navmesh from the contours. m_pmesh = new Recast.rcPolyMesh(); if (m_pmesh == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return(false); } if (!Recast.rcBuildPolyMesh(m_ctx, m_cset, m_cfg.maxVertsPerPoly, m_pmesh)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not triangulate contours."); return(false); } //m_pmesh.dumpToObj("Data/navmesh.obj"); //m_pmesh.dumpToText("Data/navmesh.txt"); // // Step 7. Create detail mesh which allows to access approximate height on each polygon. // m_dmesh = new Recast.rcPolyMeshDetail(); //rcAllocPolyMeshDetail(); if (m_dmesh == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'."); return(false); } if (!Recast.rcBuildPolyMeshDetail(m_ctx, m_pmesh, m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, m_dmesh)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build detail mesh."); return(false); } //m_dmesh.dumpToText("Data/polymeshdetail_cs.txt"); //m_dmesh.dumpToObj("Data/polymeshdetail_cs.obj"); if (!m_keepInterResults) { m_chf = null; m_cset = null; } // At this point the navigation mesh data is ready, you can access it from m_pmesh. // See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data. // // (Optional) Step 8. Create Detour data from Recast poly mesh. // // The GUI may allow more max points per polygon than Detour can handle. // Only build the detour navmesh if we do not exceed the limit. if (m_cfg.maxVertsPerPoly <= Detour.DT_VERTS_PER_POLYGON) { //unsigned char* navData = 0; Detour.dtRawTileData navData = null; //int navDataSize = 0; // Update poly flags from areas. for (int i = 0; i < m_pmesh.npolys; ++i) { if (m_pmesh.areas[i] == Recast.RC_WALKABLE_AREA) { m_pmesh.areas[i] = (byte)SamplePolyAreas.GROUND; } if (m_pmesh.areas[i] == (byte)SamplePolyAreas.GROUND) { m_pmesh.flags[i] = (ushort)SamplePolyFlags.WALK; } /* * if (m_pmesh.areas[i] == Recast.RC_WALKABLE_AREA) * m_pmesh.areas[i] = SAMPLE_POLYAREA_GROUND; * * if (m_pmesh.areas[i] == SAMPLE_POLYAREA_GROUND || * m_pmesh.areas[i] == SAMPLE_POLYAREA_GRASS || * m_pmesh.areas[i] == SAMPLE_POLYAREA_ROAD) * { * m_pmesh.flags[i] = SAMPLE_POLYFLAGS_WALK; * } * else if (m_pmesh.areas[i] == SAMPLE_POLYAREA_WATER) * { * m_pmesh.flags[i] = SAMPLE_POLYFLAGS_SWIM; * } * else if (m_pmesh.areas[i] == SAMPLE_POLYAREA_DOOR) * { * m_pmesh.flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR; * }*/ } Detour.dtNavMeshCreateParams navMeshCreateParams = new Detour.dtNavMeshCreateParams(); navMeshCreateParams.verts = m_pmesh.verts; navMeshCreateParams.vertCount = m_pmesh.nverts; navMeshCreateParams.polys = m_pmesh.polys; navMeshCreateParams.polyAreas = m_pmesh.areas; navMeshCreateParams.polyFlags = m_pmesh.flags; navMeshCreateParams.polyCount = m_pmesh.npolys; navMeshCreateParams.nvp = m_pmesh.nvp; navMeshCreateParams.detailMeshes = m_dmesh.meshes; navMeshCreateParams.detailVerts = m_dmesh.verts; navMeshCreateParams.detailVertsCount = m_dmesh.nverts; navMeshCreateParams.detailTris = m_dmesh.tris; navMeshCreateParams.detailTriCount = m_dmesh.ntris; navMeshCreateParams.offMeshConVerts = null; //m_geom.getOffMeshConnectionVerts(); navMeshCreateParams.offMeshConRad = null; //m_geom.getOffMeshConnectionRads(); navMeshCreateParams.offMeshConDir = null; //m_geom.getOffMeshConnectionDirs(); navMeshCreateParams.offMeshConAreas = null; //m_geom.getOffMeshConnectionAreas(); navMeshCreateParams.offMeshConFlags = null; //m_geom.getOffMeshConnectionFlags(); navMeshCreateParams.offMeshConUserID = null; //m_geom.getOffMeshConnectionId(); navMeshCreateParams.offMeshConCount = 0; //m_geom.getOffMeshConnectionCount(); navMeshCreateParams.walkableHeight = m_RecastMeshParams.m_agentHeight; navMeshCreateParams.walkableRadius = m_RecastMeshParams.m_agentRadius; navMeshCreateParams.walkableClimb = m_RecastMeshParams.m_agentMaxClimb; Recast.rcVcopy(navMeshCreateParams.bmin, m_pmesh.bmin); Recast.rcVcopy(navMeshCreateParams.bmax, m_pmesh.bmax); navMeshCreateParams.cs = m_cfg.cs; navMeshCreateParams.ch = m_cfg.ch; navMeshCreateParams.buildBvTree = true; if (!Detour.dtCreateNavMeshData(navMeshCreateParams, out navData)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not build Detour navmesh."); return(false); } m_navMesh = new Detour.dtNavMesh(); if (m_navMesh == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not create Detour navmesh"); return(false); } dtStatus status; status = m_navMesh.init(navData, (int)Detour.dtTileFlags.DT_TILE_FREE_DATA); if (Detour.dtStatusFailed(status)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not init Detour navmesh"); return(false); } m_navQuery = new Detour.dtNavMeshQuery(); status = m_navQuery.init(m_navMesh, 2048); if (Detour.dtStatusFailed(status)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not init Detour navmesh query"); return(false); } m_rawTileData = navData; } else { m_ctx.log(Recast.rcLogCategory.RC_LOG_WARNING, "Detour does not support more than " + Detour.DT_VERTS_PER_POLYGON + " verts per polygon. A navmesh has not been generated."); } m_ctx.stopTimer(Recast.rcTimerLabel.RC_TIMER_TOTAL); // Show performance stats. m_ctx.logBuildTimes(); m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, ">> Polymesh: " + m_pmesh.nverts + " vertices " + m_pmesh.npolys + " polygons"); m_totalBuildTimeMs = (float)m_ctx.getAccumulatedTime(Recast.rcTimerLabel.RC_TIMER_TOTAL); return(true); }
public Queue <Position> FindPathBetween(Position start, Position end, bool useStraightPath = false) { var path = new Queue <Position>(); if (dtNavMesh == null) { return(path); } var startDetourPosition = start.ToDetourPosition(); var endDetourPosition = end.ToDetourPosition(); var queryFilter = new Detour.dtQueryFilter(); var navMeshQuery = new Detour.dtNavMeshQuery(); var status = navMeshQuery.init(dtNavMesh, MAX_PATH); if (Detour.dtStatusFailed(status)) { return(path); } queryFilter.setIncludeFlags(0xffff); queryFilter.setExcludeFlags(0x0); uint startRef = 0; uint endRef = 0; float[] startNearest = new float[3]; float[] endNearest = new float[3]; float[] extents = new float[] { 10.0F, 25.0F, 10.0F }; status = navMeshQuery.findNearestPoly(startDetourPosition, extents, queryFilter, ref startRef, ref startNearest); if (Detour.dtStatusFailed(status)) { return(path); } status = navMeshQuery.findNearestPoly(endDetourPosition, extents, queryFilter, ref endRef, ref endNearest); if (Detour.dtStatusFailed(status)) { return(path); } if (!dtNavMesh.isValidPolyRef(startRef) || !dtNavMesh.isValidPolyRef(endRef)) { return(path); } uint[] pathPolys = new uint[MAX_PATH]; int pathCount = 0; float[] straightPath = new float[MAX_PATH * 3]; byte[] straightPathFlags = new byte[MAX_PATH]; uint[] straightPathPolys = new uint[MAX_PATH]; int straightPathCount = 0; status = navMeshQuery.findPath( startRef, endRef, startNearest, endNearest, queryFilter, pathPolys, ref pathCount, MAX_PATH ); if (Detour.dtStatusFailed(status)) { path.Enqueue(start); path.Enqueue(end); return(path); } status = navMeshQuery.findStraightPath( startNearest, endNearest, pathPolys, pathCount, straightPath, straightPathFlags, straightPathPolys, ref straightPathCount, MAX_PATH, (int)Detour.dtStraightPathOptions.DT_STRAIGHTPATH_ALL_CROSSINGS ); if (Detour.dtStatusFailed(status)) { path.Enqueue(start); path.Enqueue(end); return(path); } if (straightPathCount > 0) { if (Detour.dtStatusFailed(status)) { return(path); } for (int i = 3; i < straightPathCount * 3;) { float[] pathPos = new float[3]; pathPos[0] = straightPath[i++]; pathPos[1] = straightPath[i++]; pathPos[2] = straightPath[i++]; var position = ToFFXIPosition(pathPos); path.Enqueue(position); } } else { for (int i = 1; i < pathCount; i++) { float[] pathPos = new float[3]; bool posOverPoly = false; if (Detour.dtStatusFailed(navMeshQuery.closestPointOnPoly(pathPolys[i], startDetourPosition, pathPos, ref posOverPoly))) { return(path); } if (path.Count < 1) { if (Detour.dtStatusFailed(navMeshQuery.closestPointOnPolyBoundary(pathPolys[i], startDetourPosition, pathPos))) { return(path); } } var position = ToFFXIPosition(pathPos); path.Enqueue(position); } } if (path.Count < 1) { path.Enqueue(end); } return(path); }
//Compute Recast and Detour navmesh public bool ComputeSystem() { ClearComputedData(); Recast.rcCalcBounds(m_verts, m_vertCount, m_bmin, m_bmax); // // Step 1. Initialize build config. // // Init build configuration from GUI m_cfg = new Recast.rcConfig(); m_cfg.cs = m_RecastMeshParams.m_cellSize; m_cfg.ch = m_RecastMeshParams.m_cellHeight; m_cfg.walkableSlopeAngle = m_RecastMeshParams.m_agentMaxSlope; m_cfg.walkableHeight = (int)Math.Ceiling(m_RecastMeshParams.m_agentHeight / m_cfg.ch); m_cfg.walkableClimb = (int)Math.Floor(m_RecastMeshParams.m_agentMaxClimb / m_cfg.ch); m_cfg.walkableRadius = (int)Math.Ceiling(m_RecastMeshParams.m_agentRadius / m_cfg.cs); m_cfg.maxEdgeLen = (int)(m_RecastMeshParams.m_edgeMaxLen / m_RecastMeshParams.m_cellSize); m_cfg.maxSimplificationError = m_RecastMeshParams.m_edgeMaxError; m_cfg.minRegionArea = (int)(m_RecastMeshParams.m_regionMinSize * m_RecastMeshParams.m_regionMinSize); // Note: area = size*size m_cfg.mergeRegionArea = (int)(m_RecastMeshParams.m_regionMergeSize * m_RecastMeshParams.m_regionMergeSize); // Note: area = size*size m_cfg.maxVertsPerPoly = (int)m_RecastMeshParams.m_vertsPerPoly; m_cfg.detailSampleDist = m_RecastMeshParams.m_detailSampleDist < 0.9f ? 0 : m_RecastMeshParams.m_cellSize * m_RecastMeshParams.m_detailSampleDist; m_cfg.detailSampleMaxError = m_RecastMeshParams.m_cellHeight * m_RecastMeshParams.m_detailSampleMaxError; // Set the area where the navigation will be build. // Here the bounds of the input mesh are used, but the // area could be specified by an user defined box, etc. Recast.rcVcopy(m_cfg.bmin, m_bmin); Recast.rcVcopy(m_cfg.bmax, m_bmax); Recast.rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, out m_cfg.width, out m_cfg.height); // Reset build times gathering. m_ctx.resetTimers(); // Start the build process. m_ctx.startTimer(Recast.rcTimerLabel.RC_TIMER_TOTAL); m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, "Building navigation:"); m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, " - " + m_cfg.width + " x " + m_cfg.height + " cells"); m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, " - " + m_vertCount / 1000.0f + "K verts, " + m_triCount / 1000.0f + "K tris"); // // Step 2. Rasterize input polygon soup. // // Allocate voxel heightfield where we rasterize our input data to. m_solid = new Recast.rcHeightfield(); if (m_solid == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return false; } if (!Recast.rcCreateHeightfield(m_ctx, m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return false; } // Allocate array that can hold triangle area types. // If you have multiple meshes you need to process, allocate // and array which can hold the max number of triangles you need to process. m_triareas = new byte[m_triCount]; if (m_triareas == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (" + m_triCount + ")."); return false; } // Find triangles which are walkable based on their slope and rasterize them. // If your input data is multiple meshes, you can transform them here, calculate // the are type for each of the meshes and rasterize them. //memset(m_triareas, 0, ntris*sizeof(byte)); Recast.rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, m_verts, m_vertCount, m_tris, m_triCount, m_triareas); Recast.rcRasterizeTriangles(m_ctx, m_verts, m_vertCount, m_tris, m_triareas, m_triCount, m_solid, m_cfg.walkableClimb); if (!m_keepInterResults) { m_triareas = null; } // // Step 3. Filter walkables surfaces. // // Once all geoemtry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. Recast.rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, m_solid); Recast.rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, m_solid); Recast.rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, m_solid); // // Step 4. Partition walkable surface to simple regions. // // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = new Recast.rcCompactHeightfield(); if (m_chf == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return false; } if (!Recast.rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, m_solid, m_chf)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return false; } if (!m_keepInterResults) { m_solid = null; } // Erode the walkable area by agent radius. if (!Recast.rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, m_chf)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not erode."); return false; } /* // (Optional) Mark areas. ConvexVolume[] vols = m_geom.getConvexVolumes(); for (int i = 0; i < m_geom.getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (byte)vols[i].area, *m_chf); */ if (m_RecastMeshParams.m_monotonePartitioning) { // Partition the walkable surface into simple regions without holes. // Monotone partitioning does not need distancefield. if (!Recast.rcBuildRegionsMonotone(m_ctx, m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build regions."); return false; } } else { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!Recast.rcBuildDistanceField(m_ctx, m_chf)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return false; } // Partition the walkable surface into simple regions without holes. if (!Recast.rcBuildRegions(m_ctx, m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build regions."); return false; } } // // Step 5. Trace and simplify region contours. // // Create contours. m_cset = new Recast.rcContourSet(); if (m_cset == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'."); return false; } if (!Recast.rcBuildContours(m_ctx, m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, m_cset, -1)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not create contours."); return false; } //m_cset.dumpToTxt("Data/CSET_dump.txt"); // // Step 6. Build polygons mesh from contours. // // Build polygon navmesh from the contours. m_pmesh = new Recast.rcPolyMesh(); if (m_pmesh == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return false; } if (!Recast.rcBuildPolyMesh(m_ctx, m_cset, m_cfg.maxVertsPerPoly, m_pmesh)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not triangulate contours."); return false; } //m_pmesh.dumpToObj("Data/navmesh.obj"); //m_pmesh.dumpToText("Data/navmesh.txt"); // // Step 7. Create detail mesh which allows to access approximate height on each polygon. // m_dmesh = new Recast.rcPolyMeshDetail();//rcAllocPolyMeshDetail(); if (m_dmesh == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'."); return false; } if (!Recast.rcBuildPolyMeshDetail(m_ctx, m_pmesh, m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, m_dmesh)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "buildNavigation: Could not build detail mesh."); return false; } //m_dmesh.dumpToText("Data/polymeshdetail_cs.txt"); //m_dmesh.dumpToObj("Data/polymeshdetail_cs.obj"); if (!m_keepInterResults) { m_chf = null; m_cset = null; } // At this point the navigation mesh data is ready, you can access it from m_pmesh. // See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data. // // (Optional) Step 8. Create Detour data from Recast poly mesh. // // The GUI may allow more max points per polygon than Detour can handle. // Only build the detour navmesh if we do not exceed the limit. if (m_cfg.maxVertsPerPoly <= Detour.DT_VERTS_PER_POLYGON) { //unsigned char* navData = 0; Detour.dtRawTileData navData = null; //int navDataSize = 0; // Update poly flags from areas. for (int i = 0; i < m_pmesh.npolys; ++i) { if (m_pmesh.areas[i] == Recast.RC_WALKABLE_AREA) m_pmesh.areas[i] = (byte)SamplePolyAreas.GROUND; if (m_pmesh.areas[i] == (byte)SamplePolyAreas.GROUND) { m_pmesh.flags[i] = (ushort)SamplePolyFlags.WALK; } /* if (m_pmesh.areas[i] == Recast.RC_WALKABLE_AREA) m_pmesh.areas[i] = SAMPLE_POLYAREA_GROUND; if (m_pmesh.areas[i] == SAMPLE_POLYAREA_GROUND || m_pmesh.areas[i] == SAMPLE_POLYAREA_GRASS || m_pmesh.areas[i] == SAMPLE_POLYAREA_ROAD) { m_pmesh.flags[i] = SAMPLE_POLYFLAGS_WALK; } else if (m_pmesh.areas[i] == SAMPLE_POLYAREA_WATER) { m_pmesh.flags[i] = SAMPLE_POLYFLAGS_SWIM; } else if (m_pmesh.areas[i] == SAMPLE_POLYAREA_DOOR) { m_pmesh.flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR; }*/ } Detour.dtNavMeshCreateParams navMeshCreateParams = new Detour.dtNavMeshCreateParams(); navMeshCreateParams.verts = m_pmesh.verts; navMeshCreateParams.vertCount = m_pmesh.nverts; navMeshCreateParams.polys = m_pmesh.polys; navMeshCreateParams.polyAreas = m_pmesh.areas; navMeshCreateParams.polyFlags = m_pmesh.flags; navMeshCreateParams.polyCount = m_pmesh.npolys; navMeshCreateParams.nvp = m_pmesh.nvp; navMeshCreateParams.detailMeshes = m_dmesh.meshes; navMeshCreateParams.detailVerts = m_dmesh.verts; navMeshCreateParams.detailVertsCount = m_dmesh.nverts; navMeshCreateParams.detailTris = m_dmesh.tris; navMeshCreateParams.detailTriCount = m_dmesh.ntris; navMeshCreateParams.offMeshConVerts = null;//m_geom.getOffMeshConnectionVerts(); navMeshCreateParams.offMeshConRad = null;//m_geom.getOffMeshConnectionRads(); navMeshCreateParams.offMeshConDir = null;//m_geom.getOffMeshConnectionDirs(); navMeshCreateParams.offMeshConAreas = null;//m_geom.getOffMeshConnectionAreas(); navMeshCreateParams.offMeshConFlags = null;//m_geom.getOffMeshConnectionFlags(); navMeshCreateParams.offMeshConUserID = null;//m_geom.getOffMeshConnectionId(); navMeshCreateParams.offMeshConCount = 0;//m_geom.getOffMeshConnectionCount(); navMeshCreateParams.walkableHeight = m_RecastMeshParams.m_agentHeight; navMeshCreateParams.walkableRadius = m_RecastMeshParams.m_agentRadius; navMeshCreateParams.walkableClimb = m_RecastMeshParams.m_agentMaxClimb; Recast.rcVcopy(navMeshCreateParams.bmin, m_pmesh.bmin); Recast.rcVcopy(navMeshCreateParams.bmax, m_pmesh.bmax); navMeshCreateParams.cs = m_cfg.cs; navMeshCreateParams.ch = m_cfg.ch; navMeshCreateParams.buildBvTree = true; if (!Detour.dtCreateNavMeshData(navMeshCreateParams, out navData)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not build Detour navmesh."); return false; } m_navMesh = new Detour.dtNavMesh(); if (m_navMesh == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not create Detour navmesh"); return false; } dtStatus status; status = m_navMesh.init(navData, (int)Detour.dtTileFlags.DT_TILE_FREE_DATA); if (Detour.dtStatusFailed(status)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not init Detour navmesh"); return false; } m_navQuery = new Detour.dtNavMeshQuery(); status = m_navQuery.init(m_navMesh, 2048); if (Detour.dtStatusFailed(status)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not init Detour navmesh query"); return false; } m_rawTileData = navData; } else { m_ctx.log(Recast.rcLogCategory.RC_LOG_WARNING, "Detour does not support more than " + Detour.DT_VERTS_PER_POLYGON + " verts per polygon. A navmesh has not been generated."); } m_ctx.stopTimer(Recast.rcTimerLabel.RC_TIMER_TOTAL); // Show performance stats. m_ctx.logBuildTimes(); m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, ">> Polymesh: " + m_pmesh.nverts + " vertices " + m_pmesh.npolys + " polygons"); m_totalBuildTimeMs = (float) m_ctx.getAccumulatedTime(Recast.rcTimerLabel.RC_TIMER_TOTAL); return true; }
public bool ComputeSystem(byte[] tileRawData, int start) { m_ctx.enableLog(true); m_ctx.resetTimers(); // Start the build process. m_ctx.startTimer(Recast.rcTimerLabel.RC_TIMER_TOTAL); m_rawTileData = new Detour.dtRawTileData(); m_rawTileData.FromBytes(tileRawData, start); m_navMesh = new Detour.dtNavMesh(); if (m_navMesh == null) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not create Detour navmesh"); return false; } dtStatus status; status = m_navMesh.init(m_rawTileData, (int)Detour.dtTileFlags.DT_TILE_FREE_DATA); if (Detour.dtStatusFailed(status)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not init Detour navmesh"); return false; } m_navQuery = new Detour.dtNavMeshQuery(); status = m_navQuery.init(m_navMesh, 2048); if (Detour.dtStatusFailed(status)) { m_ctx.log(Recast.rcLogCategory.RC_LOG_ERROR, "Could not init Detour navmesh query"); return false; } m_ctx.stopTimer(Recast.rcTimerLabel.RC_TIMER_TOTAL); //m_ctx.log(Recast.rcLogCategory.RC_LOG_PROGRESS, ">> Polymesh: " + m_pmesh.nverts + " vertices " + m_pmesh.npolys + " polygons"); m_totalBuildTimeMs = (float) m_ctx.getAccumulatedTime(Recast.rcTimerLabel.RC_TIMER_TOTAL); return true; }
public Queue <Position> FindPathBetween(Position start, Position end, bool useStraightPath = false) { var path = new Queue <Position>(); if (dtNavMesh == null) { EasyFarm.ViewModels.LogViewModel.Write("FindPathBetween: Unable to path due to lacking navigation mesh for zone " + _zone.ToString()); return(path); } var startDetourPosition = start.ToDetourPosition(); var endDetourPosition = end.ToDetourPosition(); var queryFilter = new Detour.dtQueryFilter(); var navMeshQuery = new Detour.dtNavMeshQuery(); var status = navMeshQuery.init(dtNavMesh, 256); if (Detour.dtStatusFailed(status)) { return(path); } queryFilter.setIncludeFlags(0xffff); queryFilter.setExcludeFlags(0x0); uint startRef = 0; uint endRef = 0; float[] startNearest = new float[3]; float[] endNearest = new float[3]; float[] extents = new float[] { 10.0F, (float)EasyFarm.UserSettings.Config.Instance.HeightThreshold, 10.0F }; status = navMeshQuery.findNearestPoly(startDetourPosition, extents, queryFilter, ref startRef, ref startNearest); if (Detour.dtStatusFailed(status)) { return(path); } status = navMeshQuery.findNearestPoly(endDetourPosition, extents, queryFilter, ref endRef, ref endNearest); if (Detour.dtStatusFailed(status)) { return(path); } if (!dtNavMesh.isValidPolyRef(startRef) || !dtNavMesh.isValidPolyRef(endRef)) { return(path); } uint[] pathPolys = new uint[256]; int pathCount = 0; status = navMeshQuery.findPath(startRef, endRef, startNearest, endNearest, queryFilter, pathPolys, ref pathCount, 256); if (Detour.dtStatusFailed(status)) { return(path); } if (path.Count < 1) { float[] straightPath = new float[256 * 3]; byte[] straightPathFlags = new byte[256]; uint[] straightPathPolys = new uint[256]; int straightPathCount = 256 * 3; status = navMeshQuery.findStraightPath( startNearest, endNearest, pathPolys, pathCount, straightPath, straightPathFlags, straightPathPolys, ref straightPathCount, 256, 0 ); if (straightPathCount > 1) { if (Detour.dtStatusFailed(status)) { return(path); } path.Clear(); // i starts at 3 so the start position is ignored for (int i = 3; i < straightPathCount * 3;) { float[] pathPos = new float[3]; pathPos[0] = straightPath[i++]; pathPos[1] = straightPath[i++]; pathPos[2] = straightPath[i++]; var position = ToFFXIPosition(pathPos); path.Enqueue(position); } } } else { // i starts at 3 so the start position is ignored for (int i = 1; i < pathCount; i++) { float[] pathPos = new float[3]; bool posOverPoly = false; if (Detour.dtStatusFailed(navMeshQuery.closestPointOnPoly(pathPolys[i], startDetourPosition, pathPos, ref posOverPoly))) { return(path); } if (path.Count < 1) { if (Detour.dtStatusFailed(navMeshQuery.closestPointOnPolyBoundary(pathPolys[i], startDetourPosition, pathPos))) { return(path); } } var position = ToFFXIPosition(pathPos); path.Enqueue(position); } } return(path); }