//Differential estimate
        public double   DiffEstimate(double X)
        {
            double P = 1.0; Vdata[0] = 0.0;

            for (int k = 1; k <= nSize; k++)
            {
                Vdata[k] = P; P *= X;
            }
            double p = ParaD.DotProduct(Vdata);

            return(p);
        }
        /// <summary>
        /// Calculates the resulting velocities when colliding in a perfectly
        /// elastic manner with another object.
        /// </summary>
        /// <param name="otherObject">The other object that this one is colliding with.</param>
        protected void ProcessElasticCollisionWith(DEEPKinectObjectBaseClass otherObject)
        {
            /* We use the definition from Wikipedia for how to handle the collision of
             * two moving objects in vector form. See: en.wikipedia.org/wiki/Elastic_collision
             *
             * To be specific, we use instructions from www.vobarian.com/collisions/2dcollisions2.pdf */

            /* Here are the known quanitities of the situation. */
            DenseVector p1 = this.GetPosition();
            DenseVector p2 = otherObject.GetPosition();

            DenseVector v1 = this.velocity;
            DenseVector v2 = otherObject.velocity;

            double m1 = this.mass;
            double m2 = otherObject.mass;

            /* First we create a unit normal and tangent vector. */
            DenseVector n  = p2 - p1;
            DenseVector un = n / n.Norm(2d);
            DenseVector ut = new DenseVector(new double[] { -un[1], un[0] });

            /* Here we find the normal and tangential components of the velocities. */
            double v1n = un.DotProduct(v1);
            double v1t = ut.DotProduct(v1);

            double v2n = un.DotProduct(v2);
            double v2t = ut.DotProduct(v2);

            /* We then apply 1-D elastic collision dynamics in the normal direction to the
             * line of collision.
             * Note that there is NO CHANGE in the tangential components of the velocity. */
            double post_v1n = (v1n * (m1 - m2) + 2 * m2 * v2n) / (m1 + m2);
            double post_v2n = (v2n * (m2 - m1) + 2 * m1 * v1n) / (m1 + m2);

            /* Now we convert the scalar normal/tangential velocities into vectors pointing
             * in the appropriate directions. */
            DenseVector vPost_v1n = post_v1n * un;
            DenseVector vPost_v1t = v1t * ut;

            DenseVector vPost_v2n = post_v2n * un;
            DenseVector vPost_v2t = v2t * ut;

            /* Calculate the post-collision velocity by adding the normal/tangential velocities
             * together. */
            DenseVector v1FinalVelocity = vPost_v1n + vPost_v1t;
            DenseVector v2FinalVelocity = vPost_v2n + vPost_v2t;

            /* Set the object's velocity to the post-collision velocity. */
            this.velocity        = v1FinalVelocity;
            otherObject.velocity = v2FinalVelocity;
        }
Example #3
0
        public static double[,] Convolution(this double[,] volume, double[,] kernel)
        {
            int size       = kernel.GetLength(0);
            int volumeSize = volume.GetLength(1);
            var output     = new double[volumeSize - size + 1, volumeSize - size + 1];

            double[] kernelVector = new double[kernel.Length];
            double[] volumeVector = new double[kernel.Length];

            kernel.ForEach((q, j, i) => kernelVector[j * size + i] = q);

            var vector1 = new DenseVector(kernelVector);

            for (int x = 0; x < output.GetLength(0); x++)
            {
                for (int y = 0; y < output.GetLength(1); y++)
                {
                    var temp = new List <double>();
                    for (int j = x; j < x + size; j++)
                    {
                        for (int i = y; i < y + size; i++)
                        {
                            temp.Add(volume[j, i]);
                        }
                    }
                    volumeVector = temp.ToArray();
                    var vector2 = new DenseVector(volumeVector);

                    output[x, y] = vector1.DotProduct(vector2);
                }
            }

            return(output);
        }
Example #4
0
        /// <summary>
        /// Vector dot product of sets
        /// </summary>
        /// <param name="one">A set</param>
        /// <param name="two">A nother set</param>
        public static double operator *(Set one, Set two)
        {
            DenseVector v1 = Set.ToVector(one);
            DenseVector v2 = Set.ToVector(two);

            return(v1.DotProduct(v2));
        }
Example #5
0
        public double cutoff(double[] coef, List <double[]> final, int numberOfVar, _Worksheet sheet)
        {
            double cutoff = 0;

            double[] meanNo  = new double[numberOfVar];
            double[] meanYes = new double[numberOfVar];
            int      i       = 0;
            int      j       = 0;

            while (i < 2 * numberOfVar)
            {
                double[] temp = final[i];
                meanNo[j] = final[i].Average();
                i         = i + 2;
                j++;
            }
            i = 1;
            j = 0;
            while (i < 2 * numberOfVar)
            {
                double[] temp = final[i];
                meanYes[j] = final[i].Average();
                i          = i + 2;
                j++;
            }

            Vector <double> B  = new DenseVector(coef);
            Vector <double> x1 = new DenseVector(meanNo);
            Vector <double> x2 = new DenseVector(meanYes);

            double z1 = B.DotProduct(x1);
            double z2 = B.DotProduct(x2);

            cutoff = (z1 + z2) / 2.0;
            if (model.misclass)
            {
                double p2    = Convert.ToDouble(model.p);
                double p1    = 1.0 - p2;
                double cost1 = Convert.ToDouble(model.cost1);
                double cost2 = Convert.ToDouble(model.cost2);
                double temp  = Math.Log((cost2 * p2) / (cost1 * p1));
                cutoff = cutoff + temp;
            }

            return(cutoff);
        }
Example #6
0
        public double GetDistanceAtPoint(Vector <double> p)
        {
            Vector <double> vr = new DenseVector(2)
            {
                [0] = p[0] - Origin[0], [1] = p[1] - Origin[1]
            };

            return(vr.DotProduct(direction));
        }
Example #7
0
        /// <summary>
        /// 计算穿刺点坐标
        /// </summary>
        /// <param name="xSat"></param>
        /// <param name="ySat"></param>
        /// <param name="zSat"></param>
        /// <param name="xRec"></param>
        /// <param name="yRec"></param>
        /// <param name="zRec"></param>
        /// <param name="x"></param>
        /// <param name="y"></param>
        /// <param name="z"></param>
        /// <param name="earthR"></param>
        /// <param name="ionoH"></param>
        public static void CalIPP(double xSat, double ySat, double zSat,
                                  double xRec, double yRec, double zRec,
                                  out double x, out double y, out double z,
                                  double earthR = 63781000, double ionoH = 450000)
        {
            x = y = z = 0d;

            Vector <double> op1 = new DenseVector(new double[] { xRec, yRec, zRec });
            Vector <double> op2 = new DenseVector(new double[] { xSat, ySat, zSat });

            Vector <double> p1p2 = op1 - op2;

            p1p2 = p1p2 / p1p2.L2Norm();

            double a = p1p2.DotProduct(p1p2);
            double b = 2 * p1p2.DotProduct(op1);
            double c = op1.DotProduct(op1) - Math.Pow(earthR + ionoH, 2);

            double t1, t2;
            double delta = b * b - 4 * a * c;

            if (delta < 1e-14)
            {
                return;
            }

            else
            {
                t1 = (-b + Math.Sqrt(delta)) / 2d / a;
                t2 = (-b - Math.Sqrt(delta)) / 2d / a;

                var oi1 = op1 + t1 * p1p2;
                var oi2 = op1 + t2 * p1p2;

                var i1p2 = op2 - oi1;
                var i2p2 = op2 - oi2;

                double d1 = i1p2.DotProduct(i1p2);
                double d2 = i2p2.DotProduct(i2p2);

                if (d1 < d2)
                {
                    x = oi1[0];
                    y = oi1[1];
                    z = oi1[2];
                }
                else
                {
                    x = oi1[0];
                    y = oi1[1];
                    z = oi1[2];
                }
            }
        }
        public double Estimate(double X)
        {
            double P = 1.0;

            for (int k = 0; k <= nSize; k++)
            {
                Vdata[k] = P; P *= X;
            }

            double Y = Para.DotProduct(Vdata);

            return(Y);
        }
Example #9
0
        public IContinuousDistribution GetPredictiveDistribution(Vector <double> testInput)
        {
            Vector <double> K_test_train = new DenseVector(trainingInputs.RowCount);

            for (int j = 0; j < trainingInputs.RowCount; j++)
            {
                K_test_train[j] = kernel(testInput, trainingInputs.Row(j));
            }

            double mean     = K_test_train.DotProduct(A);
            double variance = kernel(testInput, testInput) - (K_test_train.ToRowMatrix() * invertedRegularizedTrainingKernel * K_test_train.ToColumnMatrix())[0, 0];

            return(new Normal(mean, Math.Sqrt(variance)));
        }
Example #10
0
        /// <summary>
        /// 计算ROTI
        /// </summary>
        /// <param name="arc"></param>
        /// <remarks>
        /// 2019.研究台风引起电离层扰动的形态特征.许九靖. 安徽理工大学.
        /// </remarks>
        public static void CalROTI(ref OArc arc)
        {
            if (arc is null)
            {
                return;
            }

            // 利用相位观测值计算相对STEC信号
            for (int i = 1; i < arc.Length; i++)
            {
                if (Math.Abs(arc[i]["L4"]) < 1e-13 ||
                    Math.Abs(arc[i + 1]["L4"]) < 1e-13)
                {
                    continue;
                }

                arc[i]["ltec"] = 9.52437 * (arc[i]["L4"] - arc[i - 1]["L4"]);
            }

            int order = 9;
            int left, right;

            left = right = (order - 1) / 2;
            Vector <double> seg = new DenseVector(order);

            for (int i = left; i < arc.Length - right; i++)
            {
                for (int j = 0; j < order; j++)
                {
                    seg[j] = arc[i - left + j]["ltec"];
                }

                arc[i]["roti"] = Math.Sqrt(seg.DotProduct(seg) / order - Math.Pow(seg.Mean(), 2));
            }

            arc.StartIndex += left + 1;
            arc.EndIndex   -= right + 1;
        }
Example #11
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixDimensions);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            var d = new DenseVector(input.Count);
            var r = new DenseVector(input);

            var uodd  = new DenseVector(input.Count);
            var ueven = new DenseVector(input.Count);

            var v = new DenseVector(input.Count);
            var pseudoResiduals = new DenseVector(input);

            var x     = new DenseVector(input.Count);
            var yodd  = new DenseVector(input.Count);
            var yeven = new DenseVector(input);

            // Temp vectors
            var temp  = new DenseVector(input.Count);
            var temp1 = new DenseVector(input.Count);
            var temp2 = new DenseVector(input.Count);

            // Initialize
            var startNorm = input.Norm(2);

            // Define the scalars
            Complex alpha = 0;
            Complex eta   = 0;
            double  theta = 0;

            var     tau = startNorm.Real;
            Complex rho = tau * tau;

            // Calculate the initial values for v
            // M temp = yEven
            _preconditioner.Approximate(yeven, temp);

            // v = A temp
            matrix.Multiply(temp, v);

            // Set uOdd
            v.CopyTo(ueven);

            // Start the iteration
            var iterationNumber = 0;

            while (ShouldContinue(iterationNumber, result, input, pseudoResiduals))
            {
                // First part of the step, the even bit
                if (IsEven(iterationNumber))
                {
                    // sigma = (v, r)
                    var sigma = v.DotProduct(r.Conjugate());
                    if (sigma.Real.AlmostEqual(0, 1) && sigma.Imaginary.AlmostEqual(0, 1))
                    {
                        // FAIL HERE
                        _iterator.IterationCancelled();
                        break;
                    }

                    // alpha = rho / sigma
                    alpha = rho / sigma;

                    // yOdd = yEven - alpha * v
                    v.Multiply(-alpha, temp1);
                    yeven.Add(temp1, yodd);

                    // Solve M temp = yOdd
                    _preconditioner.Approximate(yodd, temp);

                    // uOdd = A temp
                    matrix.Multiply(temp, uodd);
                }

                // The intermediate step which is equal for both even and
                // odd iteration steps.
                // Select the correct vector
                var uinternal = IsEven(iterationNumber) ? ueven : uodd;
                var yinternal = IsEven(iterationNumber) ? yeven : yodd;

                // pseudoResiduals = pseudoResiduals - alpha * uOdd
                uinternal.Multiply(-alpha, temp1);
                pseudoResiduals.Add(temp1, temp2);
                temp2.CopyTo(pseudoResiduals);

                // d = yOdd + theta * theta * eta / alpha * d
                d.Multiply(theta * theta * eta / alpha, temp);
                yinternal.Add(temp, d);

                // theta = ||pseudoResiduals||_2 / tau
                theta = pseudoResiduals.Norm(2).Real / tau;
                var c = 1 / Math.Sqrt(1 + (theta * theta));

                // tau = tau * theta * c
                tau *= theta * c;

                // eta = c^2 * alpha
                eta = c * c * alpha;

                // x = x + eta * d
                d.Multiply(eta, temp1);
                x.Add(temp1, temp2);
                temp2.CopyTo(x);

                // Check convergence and see if we can bail
                if (!ShouldContinue(iterationNumber, result, input, pseudoResiduals))
                {
                    // Calculate the real values
                    _preconditioner.Approximate(x, result);

                    // Calculate the true residual. Use the temp vector for that
                    // so that we don't pollute the pseudoResidual vector for no
                    // good reason.
                    CalculateTrueResidual(matrix, temp, result, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, result, input, temp))
                    {
                        // We're all good now.
                        return;
                    }
                }

                // The odd step
                if (!IsEven(iterationNumber))
                {
                    if (rho.Real.AlmostEqual(0, 1) && rho.Imaginary.AlmostEqual(0, 1))
                    {
                        // FAIL HERE
                        _iterator.IterationCancelled();
                        break;
                    }

                    var rhoNew = pseudoResiduals.DotProduct(r.Conjugate());
                    var beta   = rhoNew / rho;

                    // Update rho for the next loop
                    rho = rhoNew;

                    // yOdd = pseudoResiduals + beta * yOdd
                    yodd.Multiply(beta, temp1);
                    pseudoResiduals.Add(temp1, yeven);

                    // Solve M temp = yOdd
                    _preconditioner.Approximate(yeven, temp);

                    // uOdd = A temp
                    matrix.Multiply(temp, ueven);

                    // v = uEven + beta * (uOdd + beta * v)
                    v.Multiply(beta, temp1);
                    uodd.Add(temp1, temp);

                    temp.Multiply(beta, temp1);
                    ueven.Add(temp1, v);
                }

                // Calculate the real values
                _preconditioner.Approximate(x, result);

                iterationNumber++;
            }
        }
Example #12
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixDimensions);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            // x_0 is initial guess
            // Take x_0 = 0
            Vector xtemp = new DenseVector(input.Count);

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary scalars
            Complex beta = 0;
            Complex sigma;

            // Define the temporary vectors
            // rDash_0 = r_0
            Vector rdash = new DenseVector(residuals);

            // t_-1 = 0
            Vector t  = new DenseVector(residuals.Count);
            Vector t0 = new DenseVector(residuals.Count);

            // w_-1 = 0
            Vector w = new DenseVector(residuals.Count);

            // Define the remaining temporary vectors
            Vector c = new DenseVector(residuals.Count);
            Vector p = new DenseVector(residuals.Count);
            Vector s = new DenseVector(residuals.Count);
            Vector u = new DenseVector(residuals.Count);
            Vector y = new DenseVector(residuals.Count);
            Vector z = new DenseVector(residuals.Count);

            Vector temp  = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);
            Vector temp3 = new DenseVector(residuals.Count);

            // for (k = 0, 1, .... )
            var iterationNumber = 0;

            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
                p.Subtract(u, temp);

                temp.Multiply(beta, temp2);
                residuals.Add(temp2, p);

                // Solve M b_k = p_k
                _preconditioner.Approximate(p, temp);

                // s_k = A b_k
                matrix.Multiply(temp, s);

                // alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
                var alpha = rdash.DotProduct(residuals) / rdash.DotProduct(s);

                // y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
                s.Subtract(w, temp);
                t.Subtract(residuals, y);

                temp.Multiply(alpha, temp2);
                y.Add(temp2, temp3);
                temp3.CopyTo(y);

                // Store the old value of t in t0
                t.CopyTo(t0);

                // t_k = r_k - alpha_k s_k
                s.Multiply(-alpha, temp2);
                residuals.Add(temp2, t);

                // Solve M d_k = t_k
                _preconditioner.Approximate(t, temp);

                // c_k = A d_k
                matrix.Multiply(temp, c);
                var cdot = c.DotProduct(c);

                // cDot can only be zero if c is a zero vector
                // We'll set cDot to 1 if it is zero to prevent NaN's
                // Note that the calculation should continue fine because
                // c.DotProduct(t) will be zero and so will c.DotProduct(y)
                if (cdot.Real.AlmostEqual(0, 1) && cdot.Imaginary.AlmostEqual(0, 1))
                {
                    cdot = 1.0;
                }

                // Even if we don't want to do any BiCGStab steps we'll still have
                // to do at least one at the start to initialize the
                // system, but we'll only have to take special measures
                // if we don't do any so ...
                var     ctdot = c.DotProduct(t);
                Complex eta;
                if (((_numberOfBiCgStabSteps == 0) && (iterationNumber == 0)) || ShouldRunBiCgStabSteps(iterationNumber))
                {
                    // sigma_k = (c_k * t_k) / (c_k * c_k)
                    sigma = ctdot / cdot;

                    // eta_k = 0
                    eta = 0;
                }
                else
                {
                    var ydot = y.DotProduct(y);

                    // yDot can only be zero if y is a zero vector
                    // We'll set yDot to 1 if it is zero to prevent NaN's
                    // Note that the calculation should continue fine because
                    // y.DotProduct(t) will be zero and so will c.DotProduct(y)
                    if (ydot.Real.AlmostEqual(0, 1) && ydot.Imaginary.AlmostEqual(0, 1))
                    {
                        ydot = 1.0;
                    }

                    var ytdot = y.DotProduct(t);
                    var cydot = c.DotProduct(y);

                    var denom = (cdot * ydot) - (cydot * cydot);

                    // sigma_k = ((y_k * y_k)(c_k * t_k) - (y_k * t_k)(c_k * y_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    sigma = ((ydot * ctdot) - (ytdot * cydot)) / denom;

                    // eta_k = ((c_k * c_k)(y_k * t_k) - (y_k * c_k)(c_k * t_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    eta = ((cdot * ytdot) - (cydot * ctdot)) / denom;
                }

                // u_k = sigma_k s_k + eta_k (t_(k-1) - r_k + beta_(k-1) u_(k-1))
                u.Multiply(beta, temp2);
                t0.Add(temp2, temp);

                temp.Subtract(residuals, temp3);
                temp3.CopyTo(temp);
                temp.Multiply(eta, temp);

                s.Multiply(sigma, temp2);
                temp.Add(temp2, u);

                // z_k = sigma_k r_k +_ eta_k z_(k-1) - alpha_k u_k
                z.Multiply(eta, z);
                u.Multiply(-alpha, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                residuals.Multiply(sigma, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                // x_(k+1) = x_k + alpha_k p_k + z_k
                p.Multiply(alpha, temp2);
                xtemp.Add(temp2, temp3);
                temp3.CopyTo(xtemp);

                xtemp.Add(z, temp3);
                temp3.CopyTo(xtemp);

                // r_(k+1) = t_k - eta_k y_k - sigma_k c_k
                // Copy the old residuals to a temp vector because we'll
                // need those in the next step
                residuals.CopyTo(t0);

                y.Multiply(-eta, temp2);
                t.Add(temp2, residuals);

                c.Multiply(-sigma, temp2);
                residuals.Add(temp2, temp3);
                temp3.CopyTo(residuals);

                // beta_k = alpha_k / sigma_k * (r*_0 * r_(k+1)) / (r*_0 * r_k)
                // But first we check if there is a possible NaN. If so just reset beta to zero.
                beta = (!sigma.Real.AlmostEqual(0, 1) || !sigma.Imaginary.AlmostEqual(0, 1)) ? alpha / sigma * rdash.DotProduct(residuals) / rdash.DotProduct(t0) : 0;

                // w_k = c_k + beta_k s_k
                s.Multiply(beta, temp2);
                c.Add(temp2, w);

                // Get the real value
                _preconditioner.Approximate(xtemp, result);

                // Now check for convergence
                if (!ShouldContinue(iterationNumber, result, input, residuals))
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                // Next iteration.
                iterationNumber++;
            }
        }
        public DenseVector RegressionSolver(bool CalculusB = false, bool dispB = false)
        {
            this.CalculusB = CalculusB;
            try{
                CorrelCoeff = -9.0;
                Minv        = (DenseMatrix)M.Inverse();
                Para        = (DenseVector)Minv.Multiply(V);
                if (CalculusB)     //integral/differential parameter
                {
                    ParaD = new DenseVector(nSize + 1);
                    ParaI = new DenseVector(nSize + 1);
                    for (int k = 0; k < nSize; k++)
                    {
                        ParaD[k] = Para[k] * k;     //ParaD[0]=0
                        ParaI[k] = Para[k] / (k + 1);
                    }
                }

                #region statistics
                //*** Dispersion (Overall: sr, regression: sy, residual: se) ***
                int    ns   = (int)M[0, 0];
                double yav  = V[0] / ns;
                double sy   = Y2 - (double)ns * yav * yav;
                double bxy  = Para.DotProduct(V);
                double sr   = bxy - (double)ns * yav * yav;
                double se   = sy - sr;
                double sig2 = se / (double)(ns - nSize - 1);

                //*** Multiple correlation coefficient, F value ***
                double r2 = sr / sy;
                CorrelCoeff = Sqrt(r2);

                double rr2 = 1.0 - (double)(ns - 1) / (double)(ns - nSize - 1) * (1.0 - r2);
                double F   = sr / (double)nSize / (se / (double)(ns - nSize - 1));
                double prb = FValue(F, nSize, ns - nSize - 1); //Hypothesis test by F value(Risk factor)

                //*** AIC ***
                double theta = se / (double)(ns);
                double AIC   = ns * Log(theta) + 2.0 * (nSize + 1.0);

                //*** Standard deviation of regression coefficient ***
                stddevCoef = new double[nSize + 1];
                for (int k = 0; k <= nSize; k++)
                {
                    stddevCoef[k] = Sqrt(sig2 * Minv[k, k]);
                }

                //*** T value of coefficient ***
                tCoef = new double[nSize + 1];
                double chkV = 0.0;//Test for coefficient=0
                for (int k = 0; k <= nSize; k++)
                {
                    tCoef[k] = (Para[k] - chkV) / stddevCoef[k];
                }

                sampleNo = ns;
                //r2 = Max(r2,0.0);
                //rr2 = Max(rr2,0.0);
                statLst = new double[] { CorrelCoeff, r2, Sqrt(rr2), rr2, sig2, sy, sr, se, F, prb, AIC };
                if (dispB)
                {
                    regressionResult();
                }

                #endregion
                return(Para);
            }
            catch (Exception e) {
                Console.WriteLine(e.Message + "\r" + e.StackTrace);
            }
            return(null);
        }
Example #14
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient <see cref="Matrix"/>, <c>A</c>.</param>
        /// <param name="input">The solution <see cref="Vector"/>, <c>b</c>.</param>
        /// <param name="result">The result <see cref="Vector"/>, <c>x</c>.</param>
        public void Solve(Matrix <float> matrix, Vector <float> input, Vector <float> result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Parameters checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(input, matrix);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner <float>();
            }

            _preconditioner.Initialize(matrix);

            // Compute r_0 = b - Ax_0 for some initial guess x_0
            // In this case we take x_0 = vector
            // This is basically a SAXPY so it could be made a lot faster
            var residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, result, input);

            // Choose r~ (for example, r~ = r_0)
            var tempResiduals = residuals.Clone();

            // create seven temporary vectors needed to hold temporary
            // coefficients. All vectors are mangled in each iteration.
            // These are defined here to prevent stressing the garbage collector
            var vecP     = new DenseVector(residuals.Count);
            var vecPdash = new DenseVector(residuals.Count);
            var nu       = new DenseVector(residuals.Count);
            var vecS     = new DenseVector(residuals.Count);
            var vecSdash = new DenseVector(residuals.Count);
            var temp     = new DenseVector(residuals.Count);
            var temp2    = new DenseVector(residuals.Count);

            // create some temporary float variables that are needed
            // to hold values in between iterations
            float currentRho = 0;
            float alpha      = 0;
            float omega      = 0;

            var iterationNumber = 0;

            while (ShouldContinue(iterationNumber, result, input, residuals))
            {
                // rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
                var oldRho = currentRho;
                currentRho = tempResiduals.DotProduct(residuals);

                // if (rho_(i-1) == 0) // METHOD FAILS
                // If rho is only 1 ULP from zero then we fail.
                if (currentRho.AlmostEqual(0, 1))
                {
                    // Rho-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (iterationNumber != 0)
                {
                    // beta_(i-1) = (rho_(i-1)/rho_(i-2))(alpha_(i-1)/omega(i-1))
                    var beta = (currentRho / oldRho) * (alpha / omega);

                    // p_i = r_(i-1) + beta_(i-1)(p_(i-1) - omega_(i-1) * nu_(i-1))
                    nu.Multiply(-omega, temp);
                    vecP.Add(temp, temp2);
                    temp2.CopyTo(vecP);

                    vecP.Multiply(beta, vecP);
                    vecP.Add(residuals, temp2);
                    temp2.CopyTo(vecP);
                }
                else
                {
                    // p_i = r_(i-1)
                    residuals.CopyTo(vecP);
                }

                // SOLVE Mp~ = p_i // M = preconditioner
                _preconditioner.Approximate(vecP, vecPdash);

                // nu_i = Ap~
                matrix.Multiply(vecPdash, nu);

                // alpha_i = rho_(i-1)/ (r~^T nu_i) = rho / dotproduct(r~ and nu_i)
                alpha = currentRho * 1 / tempResiduals.DotProduct(nu);

                // s = r_(i-1) - alpha_i nu_i
                nu.Multiply(-alpha, temp);
                residuals.Add(temp, vecS);

                // Check if we're converged. If so then stop. Otherwise continue;
                // Calculate the temporary result.
                // Be careful not to change any of the temp vectors, except for
                // temp. Others will be used in the calculation later on.
                // x_i = x_(i-1) + alpha_i * p^_i + s^_i
                vecPdash.Multiply(alpha, temp);
                temp.Add(vecSdash, temp2);
                temp2.CopyTo(temp);
                temp.Add(result, temp2);
                temp2.CopyTo(temp);

                // Check convergence and stop if we are converged.
                if (!ShouldContinue(iterationNumber, temp, input, vecS))
                {
                    temp.CopyTo(result);

                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, result, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, result, input, residuals))
                    {
                        // We're all good now.
                        return;
                    }

                    // Continue the calculation
                    iterationNumber++;
                    continue;
                }

                // SOLVE Ms~ = s
                _preconditioner.Approximate(vecS, vecSdash);

                // temp = As~
                matrix.Multiply(vecSdash, temp);

                // omega_i = temp^T s / temp^T temp
                omega = temp.DotProduct(vecS) / temp.DotProduct(temp);

                // x_i = x_(i-1) + alpha_i p^ + omega_i s^
                temp.Multiply(-omega, residuals);
                residuals.Add(vecS, temp2);
                temp2.CopyTo(residuals);

                vecSdash.Multiply(omega, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                vecPdash.Multiply(alpha, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                // for continuation it is necessary that omega_i != 0.0
                // If omega is only 1 ULP from zero then we fail.
                if (omega.AlmostEqual(0, 1))
                {
                    // Omega-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (!ShouldContinue(iterationNumber, result, input, residuals))
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    // The residual calculation based on omega_i * s can be off by a factor 10. So here
                    // we calculate the real residual (which can be expensive) but we only do it if we're
                    // sufficiently close to the finish.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                iterationNumber++;
            }
        }
Example #15
0
        /// <summary>
        /// Run example.
        /// </summary>
        /// <seealso cref="http://en.wikipedia.org/wiki/Euclidean_vector#Scalar_multiplication">Multiply vector by scalar</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Euclidean_vector#Dot_product">Multiply vector by vector (compute the dot product between two vectors)</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Euclidean_vector#Addition_and_subtraction">Vector addition and subtraction</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Outer_product">Outer Product of two vectors</seealso>
        public void Run()
        {
            // Initialize IFormatProvider to print matrix/vector data
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();

            formatProvider.TextInfo.ListSeparator = " ";

            // Create vector "X"
            var vectorX = new DenseVector(new[] { 1.0, 2.0, 3.0, 4.0, 5.0 });

            Console.WriteLine(@"Vector X");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create vector "Y"
            var vectorY = new DenseVector(new[] { 5.0, 4.0, 3.0, 2.0, 1.0 });

            Console.WriteLine(@"Vector Y");
            Console.WriteLine(vectorY.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Multiply vector by scalar
            // 1. Using Multiply method and getting result into different vector instance
            var resultV = vectorX.Multiply(3.0);

            Console.WriteLine(@"Multiply vector by scalar using method Multiply. (result = X.Multiply(3.0))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using operator "*"
            resultV = 3.0 * vectorX;
            Console.WriteLine(@"Multiply vector by scalar using operator *. (result = 3.0 * X)");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Using Multiply method and updating vector itself
            vectorX.Multiply(3.0, vectorX);
            Console.WriteLine(@"Multiply vector by scalar using method Multiply. (X.Multiply(3.0, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Multiply vector by vector (compute the dot product between two vectors)
            // 1. Using operator "*"
            var dotProduct = vectorX * vectorY;

            Console.WriteLine(@"Dot product between two vectors using operator *. (result = X * Y)");
            Console.WriteLine(dotProduct);
            Console.WriteLine();

            // 2. Using DotProduct method and getting result into different vector instance
            dotProduct = vectorX.DotProduct(vectorY);
            Console.WriteLine(@"Dot product between two vectors using method DotProduct. (result = X.DotProduct(Y))");
            Console.WriteLine(dotProduct.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Pointwise multiplie vector with another vector
            // 1. Using PointwiseMultiply method and getting result into different vector instance
            resultV = vectorX.PointwiseMultiply(vectorY);
            Console.WriteLine(@"Pointwise multiplie vector with another vector using method PointwiseMultiply. (result = X.PointwiseMultiply(Y))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using PointwiseMultiply method and updating vector itself
            vectorX.PointwiseMultiply(vectorY, vectorX);
            Console.WriteLine(@"Pointwise multiplie vector with another vector using method PointwiseMultiply. (X.PointwiseMultiply(Y, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Pointwise divide vector with another vector
            // 1. Using PointwiseDivide method and getting result into different vector instance
            resultV = vectorX.PointwiseDivide(vectorY);
            Console.WriteLine(@"Pointwise divide vector with another vector using method PointwiseDivide. (result = X.PointwiseDivide(Y))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using PointwiseDivide method and updating vector itself
            vectorX.PointwiseDivide(vectorY, vectorX);
            Console.WriteLine(@"Pointwise divide vector with another vector using method PointwiseDivide. (X.PointwiseDivide(Y, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Addition
            // 1. Using operator "+"
            resultV = vectorX + vectorY;
            Console.WriteLine(@"Add vectors using operator +. (result = X + Y)");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using Add method and getting result into different vector instance
            resultV = vectorX.Add(vectorY);
            Console.WriteLine(@"Add vectors using method Add. (result = X.Add(Y))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Using Add method and updating vector itself
            vectorX.Add(vectorY, vectorX);
            Console.WriteLine(@"Add vectors using method Add. (X.Add(Y, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Subtraction
            // 1. Using operator "-"
            resultV = vectorX - vectorY;
            Console.WriteLine(@"Subtract vectors using operator -. (result = X - Y)");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using Subtract method and getting result into different vector instance
            resultV = vectorX.Subtract(vectorY);
            Console.WriteLine(@"Subtract vectors using method Subtract. (result = X.Subtract(Y))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Using Subtract method and updating vector itself
            vectorX.Subtract(vectorY, vectorX);
            Console.WriteLine(@"Subtract vectors using method Subtract. (X.Subtract(Y, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Divide by scalar
            // 1. Using Divide method and getting result into different vector instance
            resultV = vectorX.Divide(3.0);
            Console.WriteLine(@"Divide vector by scalar using method Divide. (result = A.Divide(3.0))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using Divide method and updating vector itself
            vectorX.Divide(3.0, vectorX);
            Console.WriteLine(@"Divide vector by scalar using method Divide. (X.Divide(3.0, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Outer Product of two vectors
            // 1. Using instanse method OuterProduct
            var resultM = vectorX.OuterProduct(vectorY);

            Console.WriteLine(@"Outer Product of two vectors using method OuterProduct. (X.OuterProduct(Y))");
            Console.WriteLine(resultM.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using static method of the Vector class
            resultM = Vector.OuterProduct(vectorX, vectorY);
            Console.WriteLine(@"Outer Product of two vectors using method OuterProduct. (Vector.OuterProduct(X,Y))");
            Console.WriteLine(resultM.ToString("#0.00\t", formatProvider));
            Console.WriteLine();
        }
Example #16
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            // x_0 is initial guess
            // Take x_0 = 0
            Vector xtemp = new DenseVector(input.Count);

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);
            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary scalars
            float beta = 0;
            float sigma;

            // Define the temporary vectors
            // rDash_0 = r_0
            Vector rdash = new DenseVector(residuals);

            // t_-1 = 0
            Vector t = new DenseVector(residuals.Count);
            Vector t0 = new DenseVector(residuals.Count);

            // w_-1 = 0
            Vector w = new DenseVector(residuals.Count);

            // Define the remaining temporary vectors
            Vector c = new DenseVector(residuals.Count);
            Vector p = new DenseVector(residuals.Count);
            Vector s = new DenseVector(residuals.Count);
            Vector u = new DenseVector(residuals.Count);
            Vector y = new DenseVector(residuals.Count);
            Vector z = new DenseVector(residuals.Count);

            Vector temp = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);
            Vector temp3 = new DenseVector(residuals.Count);

            // for (k = 0, 1, .... )
            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
                p.Subtract(u, temp);

                temp.Multiply(beta, temp2);
                residuals.Add(temp2, p);

                // Solve M b_k = p_k
                _preconditioner.Approximate(p, temp);

                // s_k = A b_k
                matrix.Multiply(temp, s);

                // alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
                var alpha = rdash.DotProduct(residuals) / rdash.DotProduct(s);

                // y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
                s.Subtract(w, temp);
                t.Subtract(residuals, y);

                temp.Multiply(alpha, temp2);
                y.Add(temp2, temp3);
                temp3.CopyTo(y);

                // Store the old value of t in t0
                t.CopyTo(t0);

                // t_k = r_k - alpha_k s_k
                s.Multiply(-alpha, temp2);
                residuals.Add(temp2, t);

                // Solve M d_k = t_k
                _preconditioner.Approximate(t, temp);

                // c_k = A d_k
                matrix.Multiply(temp, c);
                var cdot = c.DotProduct(c);

                // cDot can only be zero if c is a zero vector
                // We'll set cDot to 1 if it is zero to prevent NaN's
                // Note that the calculation should continue fine because
                // c.DotProduct(t) will be zero and so will c.DotProduct(y)
                if (cdot.AlmostEqual(0, 1))
                {
                    cdot = 1.0f;
                }

                // Even if we don't want to do any BiCGStab steps we'll still have
                // to do at least one at the start to initialize the
                // system, but we'll only have to take special measures
                // if we don't do any so ...
                var ctdot = c.DotProduct(t);
                float eta;
                if (((_numberOfBiCgStabSteps == 0) && (iterationNumber == 0)) || ShouldRunBiCgStabSteps(iterationNumber))
                {
                    // sigma_k = (c_k * t_k) / (c_k * c_k)
                    sigma = ctdot / cdot;

                    // eta_k = 0
                    eta = 0;
                }
                else
                {
                    var ydot = y.DotProduct(y);

                    // yDot can only be zero if y is a zero vector
                    // We'll set yDot to 1 if it is zero to prevent NaN's
                    // Note that the calculation should continue fine because
                    // y.DotProduct(t) will be zero and so will c.DotProduct(y)
                    if (ydot.AlmostEqual(0, 1))
                    {
                        ydot = 1.0f;
                    }

                    var ytdot = y.DotProduct(t);
                    var cydot = c.DotProduct(y);

                    var denom = (cdot * ydot) - (cydot * cydot);

                    // sigma_k = ((y_k * y_k)(c_k * t_k) - (y_k * t_k)(c_k * y_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    sigma = ((ydot * ctdot) - (ytdot * cydot)) / denom;

                    // eta_k = ((c_k * c_k)(y_k * t_k) - (y_k * c_k)(c_k * t_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    eta = ((cdot * ytdot) - (cydot * ctdot)) / denom;
                }

                // u_k = sigma_k s_k + eta_k (t_(k-1) - r_k + beta_(k-1) u_(k-1))
                u.Multiply(beta, temp2);
                t0.Add(temp2, temp);

                temp.Subtract(residuals, temp3);
                temp3.CopyTo(temp);
                temp.Multiply(eta, temp);

                s.Multiply(sigma, temp2);
                temp.Add(temp2, u);

                // z_k = sigma_k r_k +_ eta_k z_(k-1) - alpha_k u_k
                z.Multiply(eta, z);
                u.Multiply(-alpha, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                residuals.Multiply(sigma, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                // x_(k+1) = x_k + alpha_k p_k + z_k
                p.Multiply(alpha, temp2);
                xtemp.Add(temp2, temp3);
                temp3.CopyTo(xtemp);

                xtemp.Add(z, temp3);
                temp3.CopyTo(xtemp);

                // r_(k+1) = t_k - eta_k y_k - sigma_k c_k
                // Copy the old residuals to a temp vector because we'll
                // need those in the next step
                residuals.CopyTo(t0);

                y.Multiply(-eta, temp2);
                t.Add(temp2, residuals);

                c.Multiply(-sigma, temp2);
                residuals.Add(temp2, temp3);
                temp3.CopyTo(residuals);

                // beta_k = alpha_k / sigma_k * (r*_0 * r_(k+1)) / (r*_0 * r_k)
                // But first we check if there is a possible NaN. If so just reset beta to zero.
                beta = (!sigma.AlmostEqual(0, 1)) ? alpha / sigma * rdash.DotProduct(residuals) / rdash.DotProduct(t0) : 0;

                // w_k = c_k + beta_k s_k
                s.Multiply(beta, temp2);
                c.Add(temp2, w);

                // Get the real value
                _preconditioner.Approximate(xtemp, result);

                // Now check for convergence
                if (!ShouldContinue(iterationNumber, result, input, residuals))
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                // Next iteration.
                iterationNumber++;
            }
        }
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        /// <param name="iterator">The iterator to use to control when to stop iterating.</param>
        /// <param name="preconditioner">The preconditioner to use for approximations.</param>
        public void Solve(Matrix <float> matrix, Vector <float> input, Vector <float> result, Iterator <float> iterator, IPreconditioner <float> preconditioner)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, nameof(matrix));
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(input, matrix);
            }

            if (iterator == null)
            {
                iterator = new Iterator <float>();
            }

            if (preconditioner == null)
            {
                preconditioner = new UnitPreconditioner <float>();
            }

            preconditioner.Initialize(matrix);

            var d = new DenseVector(input.Count);
            var r = DenseVector.OfVector(input);

            var uodd  = new DenseVector(input.Count);
            var ueven = new DenseVector(input.Count);

            var v = new DenseVector(input.Count);
            var pseudoResiduals = DenseVector.OfVector(input);

            var x     = new DenseVector(input.Count);
            var yodd  = new DenseVector(input.Count);
            var yeven = DenseVector.OfVector(input);

            // Temp vectors
            var temp  = new DenseVector(input.Count);
            var temp1 = new DenseVector(input.Count);
            var temp2 = new DenseVector(input.Count);

            // Define the scalars
            float alpha = 0;
            float eta   = 0;
            float theta = 0;

            // Initialize
            var tau = (float)input.L2Norm();
            var rho = tau * tau;

            // Calculate the initial values for v
            // M temp = yEven
            preconditioner.Approximate(yeven, temp);

            // v = A temp
            matrix.Multiply(temp, v);

            // Set uOdd
            v.CopyTo(ueven);

            // Start the iteration
            var iterationNumber = 0;

            while (iterator.DetermineStatus(iterationNumber, result, input, pseudoResiduals) == IterationStatus.Continue)
            {
                // First part of the step, the even bit
                if (IsEven(iterationNumber))
                {
                    // sigma = (v, r)
                    var sigma = v.DotProduct(r);
                    if (sigma.AlmostEqualNumbersBetween(0, 1))
                    {
                        // FAIL HERE
                        iterator.Cancel();
                        break;
                    }

                    // alpha = rho / sigma
                    alpha = rho / sigma;

                    // yOdd = yEven - alpha * v
                    v.Multiply(-alpha, temp1);
                    yeven.Add(temp1, yodd);

                    // Solve M temp = yOdd
                    preconditioner.Approximate(yodd, temp);

                    // uOdd = A temp
                    matrix.Multiply(temp, uodd);
                }

                // The intermediate step which is equal for both even and
                // odd iteration steps.
                // Select the correct vector
                var uinternal = IsEven(iterationNumber) ? ueven : uodd;
                var yinternal = IsEven(iterationNumber) ? yeven : yodd;

                // pseudoResiduals = pseudoResiduals - alpha * uOdd
                uinternal.Multiply(-alpha, temp1);
                pseudoResiduals.Add(temp1, temp2);
                temp2.CopyTo(pseudoResiduals);

                // d = yOdd + theta * theta * eta / alpha * d
                d.Multiply((theta * theta * eta) / alpha, temp);
                yinternal.Add(temp, d);

                // theta = ||pseudoResiduals||_2 / tau
                theta = (float)pseudoResiduals.L2Norm() / tau;
                var c = 1 / (float)Math.Sqrt(1 + (theta * theta));

                // tau = tau * theta * c
                tau *= theta * c;

                // eta = c^2 * alpha
                eta = c * c * alpha;

                // x = x + eta * d
                d.Multiply(eta, temp1);
                x.Add(temp1, temp2);
                temp2.CopyTo(x);

                // Check convergence and see if we can bail
                if (iterator.DetermineStatus(iterationNumber, result, input, pseudoResiduals) != IterationStatus.Continue)
                {
                    // Calculate the real values
                    preconditioner.Approximate(x, result);

                    // Calculate the true residual. Use the temp vector for that
                    // so that we don't pollute the pseudoResidual vector for no
                    // good reason.
                    CalculateTrueResidual(matrix, temp, result, input);

                    // Now recheck the convergence
                    if (iterator.DetermineStatus(iterationNumber, result, input, temp) != IterationStatus.Continue)
                    {
                        // We're all good now.
                        return;
                    }
                }

                // The odd step
                if (!IsEven(iterationNumber))
                {
                    if (rho.AlmostEqualNumbersBetween(0, 1))
                    {
                        // FAIL HERE
                        iterator.Cancel();
                        break;
                    }

                    var rhoNew = pseudoResiduals.DotProduct(r);
                    var beta   = rhoNew / rho;

                    // Update rho for the next loop
                    rho = rhoNew;

                    // yOdd = pseudoResiduals + beta * yOdd
                    yodd.Multiply(beta, temp1);
                    pseudoResiduals.Add(temp1, yeven);

                    // Solve M temp = yOdd
                    preconditioner.Approximate(yeven, temp);

                    // uOdd = A temp
                    matrix.Multiply(temp, ueven);

                    // v = uEven + beta * (uOdd + beta * v)
                    v.Multiply(beta, temp1);
                    uodd.Add(temp1, temp);

                    temp.Multiply(beta, temp1);
                    ueven.Add(temp1, v);
                }

                // Calculate the real values
                preconditioner.Approximate(x, result);

                iterationNumber++;
            }
        }
Example #18
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            var d = new DenseVector(input.Count);
            var r = new DenseVector(input);

            var uodd = new DenseVector(input.Count);
            var ueven = new DenseVector(input.Count);

            var v = new DenseVector(input.Count);
            var pseudoResiduals = new DenseVector(input);

            var x = new DenseVector(input.Count);
            var yodd = new DenseVector(input.Count);
            var yeven = new DenseVector(input);

            // Temp vectors
            var temp = new DenseVector(input.Count);
            var temp1 = new DenseVector(input.Count);
            var temp2 = new DenseVector(input.Count);

            // Initialize
            var startNorm = input.Norm(2);

            // Define the scalars
            double alpha = 0;
            double eta = 0;
            double theta = 0;

            var tau = startNorm;
            var rho = tau * tau;

            // Calculate the initial values for v
            // M temp = yEven
            _preconditioner.Approximate(yeven, temp);

            // v = A temp
            matrix.Multiply(temp, v);

            // Set uOdd
            v.CopyTo(ueven);

            // Start the iteration
            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, result, input, pseudoResiduals))
            {
                // First part of the step, the even bit
                if (IsEven(iterationNumber))
                {
                    // sigma = (v, r)
                    var sigma = v.DotProduct(r);
                    if (sigma.AlmostEqual(0, 1))
                    {
                        // FAIL HERE
                        _iterator.IterationCancelled();
                        break;
                    }

                    // alpha = rho / sigma
                    alpha = rho / sigma;

                    // yOdd = yEven - alpha * v
                    v.Multiply(-alpha, temp1);
                    yeven.Add(temp1, yodd);

                    // Solve M temp = yOdd
                    _preconditioner.Approximate(yodd, temp);

                    // uOdd = A temp
                    matrix.Multiply(temp, uodd);
                }

                // The intermediate step which is equal for both even and
                // odd iteration steps.
                // Select the correct vector
                var uinternal = IsEven(iterationNumber) ? ueven : uodd;
                var yinternal = IsEven(iterationNumber) ? yeven : yodd;

                // pseudoResiduals = pseudoResiduals - alpha * uOdd
                uinternal.Multiply(-alpha, temp1);
                pseudoResiduals.Add(temp1, temp2);
                temp2.CopyTo(pseudoResiduals);

                // d = yOdd + theta * theta * eta / alpha * d
                d.Multiply(theta * theta * eta / alpha, temp);
                yinternal.Add(temp, d);

                // theta = ||pseudoResiduals||_2 / tau
                theta = pseudoResiduals.Norm(2) / tau;
                var c = 1 / Math.Sqrt(1 + (theta * theta));

                // tau = tau * theta * c
                tau *= theta * c;

                // eta = c^2 * alpha
                eta = c * c * alpha;

                // x = x + eta * d
                d.Multiply(eta, temp1);
                x.Add(temp1, temp2);
                temp2.CopyTo(x);

                // Check convergence and see if we can bail
                if (!ShouldContinue(iterationNumber, result, input, pseudoResiduals))
                {
                    // Calculate the real values
                    _preconditioner.Approximate(x, result);

                    // Calculate the true residual. Use the temp vector for that
                    // so that we don't pollute the pseudoResidual vector for no
                    // good reason.
                    CalculateTrueResidual(matrix, temp, result, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, result, input, temp))
                    {
                        // We're all good now.
                        return;
                    }
                }

                // The odd step
                if (!IsEven(iterationNumber))
                {
                    if (rho.AlmostEqual(0, 1))
                    {
                        // FAIL HERE
                        _iterator.IterationCancelled();
                        break;
                    }

                    var rhoNew = pseudoResiduals.DotProduct(r);
                    var beta = rhoNew / rho;

                    // Update rho for the next loop
                    rho = rhoNew;

                    // yOdd = pseudoResiduals + beta * yOdd
                    yodd.Multiply(beta, temp1);
                    pseudoResiduals.Add(temp1, yeven);

                    // Solve M temp = yOdd
                    _preconditioner.Approximate(yeven, temp);

                    // uOdd = A temp
                    matrix.Multiply(temp, ueven);

                    // v = uEven + beta * (uOdd + beta * v)
                    v.Multiply(beta, temp1);
                    uodd.Add(temp1, temp);

                    temp.Multiply(beta, temp1);
                    ueven.Add(temp1, v);
                }

                // Calculate the real values
                _preconditioner.Approximate(x, result);

                iterationNumber++;
            }
        }
Example #19
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixDimensions);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            // Choose an initial guess x_0
            // Take x_0 = 0
            Vector xtemp = new DenseVector(input.Count);

            // Choose k vectors q_1, q_2, ..., q_k
            // Build a new set if:
            // a) the stored set doesn't exist (i.e. == null)
            // b) Is of an incorrect length (i.e. too long)
            // c) The vectors are of an incorrect length (i.e. too long or too short)
            var useOld = false;
            if (_startingVectors != null)
            {
                // We don't accept collections with zero starting vectors so ...
                if (_startingVectors.Count <= NumberOfStartingVectorsToCreate(_numberOfStartingVectors, input.Count))
                {
                    // Only check the first vector for sizing. If that matches we assume the
                    // other vectors match too. If they don't the process will crash
                    if (_startingVectors[0].Count == input.Count)
                    {
                        useOld = true;
                    }
                }
            }

            _startingVectors = useOld ? _startingVectors : CreateStartingVectors(_numberOfStartingVectors, input.Count);

            // Store the number of starting vectors. Not really necessary but easier to type :)
            var k = _startingVectors.Count;

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);
            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary values
            var c = new Complex[k];

            // Define the temporary vectors
            Vector gtemp = new DenseVector(residuals.Count);

            Vector u = new DenseVector(residuals.Count);
            Vector utemp = new DenseVector(residuals.Count);
            Vector temp = new DenseVector(residuals.Count);
            Vector temp1 = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);

            Vector zd = new DenseVector(residuals.Count);
            Vector zg = new DenseVector(residuals.Count);
            Vector zw = new DenseVector(residuals.Count);

            var d = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // g_0 = r_0
            var g = CreateVectorArray(_startingVectors.Count, residuals.Count);
            residuals.CopyTo(g[k - 1]);

            var w = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // FOR (j = 0, 1, 2 ....)
            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // SOLVE M g~_((j-1)k+k) = g_((j-1)k+k)
                _preconditioner.Approximate(g[k - 1], gtemp);

                // w_((j-1)k+k) = A g~_((j-1)k+k)
                matrix.Multiply(gtemp, w[k - 1]);

                // c_((j-1)k+k) = q^T_1 w_((j-1)k+k)
                c[k - 1] = _startingVectors[0].DotProduct(w[k - 1]);
                if (c[k - 1].Real.AlmostEqual(0, 1) && c[k - 1].Imaginary.AlmostEqual(0, 1))
                {
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                // alpha_(jk+1) = q^T_1 r_((j-1)k+k) / c_((j-1)k+k)
                var alpha = _startingVectors[0].DotProduct(residuals) / c[k - 1];

                // u_(jk+1) = r_((j-1)k+k) - alpha_(jk+1) w_((j-1)k+k)
                w[k - 1].Multiply(-alpha, temp);
                residuals.Add(temp, u);

                // SOLVE M u~_(jk+1) = u_(jk+1)
                _preconditioner.Approximate(u, temp1);
                temp1.CopyTo(utemp);

                // rho_(j+1) = -u^t_(jk+1) A u~_(jk+1) / ||A u~_(jk+1)||^2
                matrix.Multiply(temp1, temp);
                var rho = temp.DotProduct(temp);

                // If rho is zero then temp is a zero vector and we're probably
                // about to have zero residuals (i.e. an exact solution).
                // So set rho to 1.0 because in the next step it will turn to zero.
                if (rho.Real.AlmostEqual(0, 1) && rho.Imaginary.AlmostEqual(0, 1))
                {
                    rho = 1.0;
                }

                rho = -u.DotProduct(temp) / rho;

                // r_(jk+1) = rho_(j+1) A u~_(jk+1) + u_(jk+1)
                u.CopyTo(residuals);

                // Reuse temp
                temp.Multiply(rho, temp);
                residuals.Add(temp, temp2);
                temp2.CopyTo(residuals);

                // x_(jk+1) = x_((j-1)k_k) - rho_(j+1) u~_(jk+1) + alpha_(jk+1) g~_((j-1)k+k)
                utemp.Multiply(-rho, temp);
                xtemp.Add(temp, temp2);
                temp2.CopyTo(xtemp);

                gtemp.Multiply(alpha, gtemp);
                xtemp.Add(gtemp, temp2);
                temp2.CopyTo(xtemp);

                // Check convergence and stop if we are converged.
                if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                {
                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, xtemp, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                    {
                        // We're all good now.
                        // Exit from the while loop.
                        break;
                    }
                }

                // FOR (i = 1,2, ...., k)
                for (var i = 0; i < k; i++)
                {
                    // z_d = u_(jk+1)
                    u.CopyTo(zd);

                    // z_g = r_(jk+i)
                    residuals.CopyTo(zg);

                    // z_w = 0
                    zw.Clear();

                    // FOR (s = i, ...., k-1) AND j >= 1
                    Complex beta;
                    if (iterationNumber >= 1)
                    {
                        for (var s = i; s < k - 1; s++)
                        {
                            // beta^(jk+i)_((j-1)k+s) = -q^t_(s+1) z_d / c_((j-1)k+s)
                            beta = -_startingVectors[s + 1].DotProduct(zd) / c[s];

                            // z_d = z_d + beta^(jk+i)_((j-1)k+s) d_((j-1)k+s)
                            d[s].Multiply(beta, temp);
                            zd.Add(temp, temp2);
                            temp2.CopyTo(zd);

                            // z_g = z_g + beta^(jk+i)_((j-1)k+s) g_((j-1)k+s)
                            g[s].Multiply(beta, temp);
                            zg.Add(temp, temp2);
                            temp2.CopyTo(zg);

                            // z_w = z_w + beta^(jk+i)_((j-1)k+s) w_((j-1)k+s)
                            w[s].Multiply(beta, temp);
                            zw.Add(temp, temp2);
                            temp2.CopyTo(zw);
                        }
                    }

                    beta = rho * c[k - 1];
                    if (beta.Real.AlmostEqual(0, 1) && beta.Imaginary.AlmostEqual(0, 1))
                    {
                        throw new Exception("Iterative solver experience a numerical break down");
                    }

                    // beta^(jk+i)_((j-1)k+k) = -(q^T_1 (r_(jk+1) + rho_(j+1) z_w)) / (rho_(j+1) c_((j-1)k+k))
                    zw.Multiply(rho, temp2);
                    residuals.Add(temp2, temp);
                    beta = -_startingVectors[0].DotProduct(temp) / beta;

                    // z_g = z_g + beta^(jk+i)_((j-1)k+k) g_((j-1)k+k)
                    g[k - 1].Multiply(beta, temp);
                    zg.Add(temp, temp2);
                    temp2.CopyTo(zg);

                    // z_w = rho_(j+1) (z_w + beta^(jk+i)_((j-1)k+k) w_((j-1)k+k))
                    w[k - 1].Multiply(beta, temp);
                    zw.Add(temp, temp2);
                    temp2.CopyTo(zw);
                    zw.Multiply(rho, zw);

                    // z_d = r_(jk+i) + z_w
                    residuals.Add(zw, zd);

                    // FOR (s = 1, ... i - 1)
                    for (var s = 0; s < i - 1; s++)
                    {
                        // beta^(jk+i)_(jk+s) = -q^T_s+1 z_d / c_(jk+s)
                        beta = -_startingVectors[s + 1].DotProduct(zd) / c[s];

                        // z_d = z_d + beta^(jk+i)_(jk+s) * d_(jk+s)
                        d[s].Multiply(beta, temp);
                        zd.Add(temp, temp2);
                        temp2.CopyTo(zd);

                        // z_g = z_g + beta^(jk+i)_(jk+s) * g_(jk+s)
                        g[s].Multiply(beta, temp);
                        zg.Add(temp, temp2);
                        temp2.CopyTo(zg);
                    }

                    // d_(jk+i) = z_d - u_(jk+i)
                    zd.Subtract(u, d[i]);

                    // g_(jk+i) = z_g + z_w
                    zg.Add(zw, g[i]);

                    // IF (i < k - 1)
                    if (i < k - 1)
                    {
                        // c_(jk+1) = q^T_i+1 d_(jk+i)
                        c[i] = _startingVectors[i + 1].DotProduct(d[i]);
                        if (c[i].Real.AlmostEqual(0, 1) && c[i].Imaginary.AlmostEqual(0, 1))
                        {
                            throw new Exception("Iterative solver experience a numerical break down");
                        }

                        // alpha_(jk+i+1) = q^T_(i+1) u_(jk+i) / c_(jk+i)
                        alpha = _startingVectors[i + 1].DotProduct(u) / c[i];

                        // u_(jk+i+1) = u_(jk+i) - alpha_(jk+i+1) d_(jk+i)
                        d[i].Multiply(-alpha, temp);
                        u.Add(temp, temp2);
                        temp2.CopyTo(u);

                        // SOLVE M g~_(jk+i) = g_(jk+i)
                        _preconditioner.Approximate(g[i], gtemp);

                        // x_(jk+i+1) = x_(jk+i) + rho_(j+1) alpha_(jk+i+1) g~_(jk+i)
                        gtemp.Multiply(rho * alpha, temp);
                        xtemp.Add(temp, temp2);
                        temp2.CopyTo(xtemp);

                        // w_(jk+i) = A g~_(jk+i)
                        matrix.Multiply(gtemp, w[i]);

                        // r_(jk+i+1) = r_(jk+i) - rho_(j+1) alpha_(jk+i+1) w_(jk+i)
                        w[i].Multiply(-rho * alpha, temp);
                        residuals.Add(temp, temp2);
                        temp2.CopyTo(residuals);

                        // We can check the residuals here if they're close
                        if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                        {
                            // Recalculate the residuals and go round again. This is done to ensure that
                            // we have the proper residuals.
                            CalculateTrueResidual(matrix, residuals, xtemp, input);
                        }
                    }
                } // END ITERATION OVER i

                iterationNumber++;
            }

            // copy the temporary result to the real result vector
            xtemp.CopyTo(result);
        }
Example #20
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        /// <param name="iterator">The iterator to use to control when to stop iterating.</param>
        /// <param name="preconditioner">The preconditioner to use for approximations.</param>
        public void Solve(Matrix <double> matrix, Vector <double> input, Vector <double> result, Iterator <double> iterator, IPreconditioner <double> preconditioner)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, nameof(matrix));
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(input, matrix);
            }

            if (iterator == null)
            {
                iterator = new Iterator <double>();
            }

            if (preconditioner == null)
            {
                preconditioner = new UnitPreconditioner <double>();
            }

            preconditioner.Initialize(matrix);

            // x_0 is initial guess
            // Take x_0 = 0
            var xtemp = new DenseVector(input.Count);

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            var residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary scalars
            double beta = 0;

            // Define the temporary vectors
            // rDash_0 = r_0
            var rdash = DenseVector.OfVector(residuals);

            // t_-1 = 0
            var t  = new DenseVector(residuals.Count);
            var t0 = new DenseVector(residuals.Count);

            // w_-1 = 0
            var w = new DenseVector(residuals.Count);

            // Define the remaining temporary vectors
            var c = new DenseVector(residuals.Count);
            var p = new DenseVector(residuals.Count);
            var s = new DenseVector(residuals.Count);
            var u = new DenseVector(residuals.Count);
            var y = new DenseVector(residuals.Count);
            var z = new DenseVector(residuals.Count);

            var temp  = new DenseVector(residuals.Count);
            var temp2 = new DenseVector(residuals.Count);
            var temp3 = new DenseVector(residuals.Count);

            // for (k = 0, 1, .... )
            var iterationNumber = 0;

            while (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) == IterationStatus.Continue)
            {
                // p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
                p.Subtract(u, temp);

                temp.Multiply(beta, temp2);
                residuals.Add(temp2, p);

                // Solve M b_k = p_k
                preconditioner.Approximate(p, temp);

                // s_k = A b_k
                matrix.Multiply(temp, s);

                // alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
                var alpha = rdash.DotProduct(residuals) / rdash.DotProduct(s);

                // y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
                s.Subtract(w, temp);
                t.Subtract(residuals, y);

                temp.Multiply(alpha, temp2);
                y.Add(temp2, temp3);
                temp3.CopyTo(y);

                // Store the old value of t in t0
                t.CopyTo(t0);

                // t_k = r_k - alpha_k s_k
                s.Multiply(-alpha, temp2);
                residuals.Add(temp2, t);

                // Solve M d_k = t_k
                preconditioner.Approximate(t, temp);

                // c_k = A d_k
                matrix.Multiply(temp, c);
                var cdot = c.DotProduct(c);

                // cDot can only be zero if c is a zero vector
                // We'll set cDot to 1 if it is zero to prevent NaN's
                // Note that the calculation should continue fine because
                // c.DotProduct(t) will be zero and so will c.DotProduct(y)
                if (cdot.AlmostEqualNumbersBetween(0, 1))
                {
                    cdot = 1.0;
                }

                // Even if we don't want to do any BiCGStab steps we'll still have
                // to do at least one at the start to initialize the
                // system, but we'll only have to take special measures
                // if we don't do any so ...
                var    ctdot = c.DotProduct(t);
                double eta;
                double sigma;
                if (((_numberOfBiCgStabSteps == 0) && (iterationNumber == 0)) || ShouldRunBiCgStabSteps(iterationNumber))
                {
                    // sigma_k = (c_k * t_k) / (c_k * c_k)
                    sigma = ctdot / cdot;

                    // eta_k = 0
                    eta = 0;
                }
                else
                {
                    var ydot = y.DotProduct(y);

                    // yDot can only be zero if y is a zero vector
                    // We'll set yDot to 1 if it is zero to prevent NaN's
                    // Note that the calculation should continue fine because
                    // y.DotProduct(t) will be zero and so will c.DotProduct(y)
                    if (ydot.AlmostEqualNumbersBetween(0, 1))
                    {
                        ydot = 1.0;
                    }

                    var ytdot = y.DotProduct(t);
                    var cydot = c.DotProduct(y);

                    var denom = (cdot * ydot) - (cydot * cydot);

                    // sigma_k = ((y_k * y_k)(c_k * t_k) - (y_k * t_k)(c_k * y_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    sigma = ((ydot * ctdot) - (ytdot * cydot)) / denom;

                    // eta_k = ((c_k * c_k)(y_k * t_k) - (y_k * c_k)(c_k * t_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    eta = ((cdot * ytdot) - (cydot * ctdot)) / denom;
                }

                // u_k = sigma_k s_k + eta_k (t_(k-1) - r_k + beta_(k-1) u_(k-1))
                u.Multiply(beta, temp2);
                t0.Add(temp2, temp);

                temp.Subtract(residuals, temp3);
                temp3.CopyTo(temp);
                temp.Multiply(eta, temp);

                s.Multiply(sigma, temp2);
                temp.Add(temp2, u);

                // z_k = sigma_k r_k +_ eta_k z_(k-1) - alpha_k u_k
                z.Multiply(eta, z);
                u.Multiply(-alpha, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                residuals.Multiply(sigma, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                // x_(k+1) = x_k + alpha_k p_k + z_k
                p.Multiply(alpha, temp2);
                xtemp.Add(temp2, temp3);
                temp3.CopyTo(xtemp);

                xtemp.Add(z, temp3);
                temp3.CopyTo(xtemp);

                // r_(k+1) = t_k - eta_k y_k - sigma_k c_k
                // Copy the old residuals to a temp vector because we'll
                // need those in the next step
                residuals.CopyTo(t0);

                y.Multiply(-eta, temp2);
                t.Add(temp2, residuals);

                c.Multiply(-sigma, temp2);
                residuals.Add(temp2, temp3);
                temp3.CopyTo(residuals);

                // beta_k = alpha_k / sigma_k * (r*_0 * r_(k+1)) / (r*_0 * r_k)
                // But first we check if there is a possible NaN. If so just reset beta to zero.
                beta = (!sigma.AlmostEqualNumbersBetween(0, 1)) ? ((alpha / sigma) * rdash.DotProduct(residuals)) / rdash.DotProduct(t0) : 0;

                // w_k = c_k + beta_k s_k
                s.Multiply(beta, temp2);
                c.Add(temp2, w);

                // Get the real value
                preconditioner.Approximate(xtemp, result);

                // Now check for convergence
                if (iterator.DetermineStatus(iterationNumber, result, input, residuals) != IterationStatus.Continue)
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                // Next iteration.
                iterationNumber++;
            }
        }
Example #21
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient <see cref="Matrix"/>, <c>A</c>.</param>
        /// <param name="input">The solution <see cref="Vector"/>, <c>b</c>.</param>
        /// <param name="result">The result <see cref="Vector"/>, <c>x</c>.</param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Parameters checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(input, result);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }
            
            _preconditioner.Initialize(matrix);
            
            // Compute r_0 = b - Ax_0 for some initial guess x_0
            // In this case we take x_0 = vector
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);
            CalculateTrueResidual(matrix, residuals, result, input);

            // Choose r~ (for example, r~ = r_0)
            var tempResiduals = residuals.Clone();

            // create seven temporary vectors needed to hold temporary
            // coefficients. All vectors are mangled in each iteration.
            // These are defined here to prevent stressing the garbage collector
            Vector vecP = new DenseVector(residuals.Count);
            Vector vecPdash = new DenseVector(residuals.Count);
            Vector nu = new DenseVector(residuals.Count);
            Vector vecS = new DenseVector(residuals.Count);
            Vector vecSdash = new DenseVector(residuals.Count);
            Vector temp = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);

            // create some temporary double variables that are needed
            // to hold values in between iterations
            Complex currentRho = 0;
            Complex alpha = 0;
            Complex omega = 0;

            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, result, input, residuals))
            {
                // rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
                var oldRho = currentRho;
                currentRho = tempResiduals.DotProduct(residuals);

                // if (rho_(i-1) == 0) // METHOD FAILS
                // If rho is only 1 ULP from zero then we fail.
                if (currentRho.Real.AlmostEqual(0, 1) && currentRho.Imaginary.AlmostEqual(0, 1))
                {
                    // Rho-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (iterationNumber != 0)
                {
                    // beta_(i-1) = (rho_(i-1)/rho_(i-2))(alpha_(i-1)/omega(i-1))
                    var beta = (currentRho / oldRho) * (alpha / omega);

                    // p_i = r_(i-1) + beta_(i-1)(p_(i-1) - omega_(i-1) * nu_(i-1))
                    nu.Multiply(-omega, temp);
                    vecP.Add(temp, temp2);
                    temp2.CopyTo(vecP);

                    vecP.Multiply(beta, vecP);
                    vecP.Add(residuals, temp2);
                    temp2.CopyTo(vecP);
                }
                else
                {
                    // p_i = r_(i-1)
                    residuals.CopyTo(vecP);
                }

                // SOLVE Mp~ = p_i // M = preconditioner
                _preconditioner.Approximate(vecP, vecPdash);
                
                // nu_i = Ap~
                matrix.Multiply(vecPdash, nu);

                // alpha_i = rho_(i-1)/ (r~^T nu_i) = rho / dotproduct(r~ and nu_i)
                alpha = currentRho * 1 / tempResiduals.DotProduct(nu);

                // s = r_(i-1) - alpha_i nu_i
                nu.Multiply(-alpha, temp);
                residuals.Add(temp, vecS);

                // Check if we're converged. If so then stop. Otherwise continue;
                // Calculate the temporary result. 
                // Be careful not to change any of the temp vectors, except for
                // temp. Others will be used in the calculation later on.
                // x_i = x_(i-1) + alpha_i * p^_i + s^_i
                vecPdash.Multiply(alpha, temp);
                temp.Add(vecSdash, temp2);
                temp2.CopyTo(temp);
                temp.Add(result, temp2);
                temp2.CopyTo(temp);

                // Check convergence and stop if we are converged.
                if (!ShouldContinue(iterationNumber, temp, input, vecS))
                {
                    temp.CopyTo(result);

                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, result, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, result, input, residuals))
                    {
                        // We're all good now.
                        return;
                    }

                    // Continue the calculation
                    iterationNumber++;
                    continue;
                }

                // SOLVE Ms~ = s
                _preconditioner.Approximate(vecS, vecSdash);

                // temp = As~
                matrix.Multiply(vecSdash, temp);

                // omega_i = temp^T s / temp^T temp
                omega = temp.DotProduct(vecS) / temp.DotProduct(temp);

                // x_i = x_(i-1) + alpha_i p^ + omega_i s^
                temp.Multiply(-omega, residuals);
                residuals.Add(vecS, temp2);
                temp2.CopyTo(residuals);

                vecSdash.Multiply(omega, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                vecPdash.Multiply(alpha, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                // for continuation it is necessary that omega_i != 0.0
                // If omega is only 1 ULP from zero then we fail.
                if (omega.Real.AlmostEqual(0, 1) && omega.Imaginary.AlmostEqual(0, 1))
                {
                    // Omega-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (!ShouldContinue(iterationNumber, result, input, residuals))
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    // The residual calculation based on omega_i * s can be off by a factor 10. So here
                    // we calculate the real residual (which can be expensive) but we only do it if we're
                    // sufficiently close to the finish.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                iterationNumber++;
            }
        }
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (input.Count != matrix.RowCount || result.Count != input.Count)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(matrix, input, result);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            // Choose an initial guess x_0
            // Take x_0 = 0
            Vector xtemp = new DenseVector(input.Count);

            // Choose k vectors q_1, q_2, ..., q_k
            // Build a new set if:
            // a) the stored set doesn't exist (i.e. == null)
            // b) Is of an incorrect length (i.e. too long)
            // c) The vectors are of an incorrect length (i.e. too long or too short)
            var useOld = false;

            if (_startingVectors != null)
            {
                // We don't accept collections with zero starting vectors so ...
                if (_startingVectors.Count <= NumberOfStartingVectorsToCreate(_numberOfStartingVectors, input.Count))
                {
                    // Only check the first vector for sizing. If that matches we assume the
                    // other vectors match too. If they don't the process will crash
                    if (_startingVectors[0].Count == input.Count)
                    {
                        useOld = true;
                    }
                }
            }

            _startingVectors = useOld ? _startingVectors : CreateStartingVectors(_numberOfStartingVectors, input.Count);

            // Store the number of starting vectors. Not really necessary but easier to type :)
            var k = _startingVectors.Count;

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary values
            var c = new Complex[k];

            // Define the temporary vectors
            Vector gtemp = new DenseVector(residuals.Count);

            Vector u     = new DenseVector(residuals.Count);
            Vector utemp = new DenseVector(residuals.Count);
            Vector temp  = new DenseVector(residuals.Count);
            Vector temp1 = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);

            Vector zd = new DenseVector(residuals.Count);
            Vector zg = new DenseVector(residuals.Count);
            Vector zw = new DenseVector(residuals.Count);

            var d = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // g_0 = r_0
            var g = CreateVectorArray(_startingVectors.Count, residuals.Count);

            residuals.CopyTo(g[k - 1]);

            var w = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // FOR (j = 0, 1, 2 ....)
            var iterationNumber = 0;

            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // SOLVE M g~_((j-1)k+k) = g_((j-1)k+k)
                _preconditioner.Approximate(g[k - 1], gtemp);

                // w_((j-1)k+k) = A g~_((j-1)k+k)
                matrix.Multiply(gtemp, w[k - 1]);

                // c_((j-1)k+k) = q^T_1 w_((j-1)k+k)
                c[k - 1] = _startingVectors[0].DotProduct(w[k - 1]);
                if (c[k - 1].Real.AlmostEqual(0, 1) && c[k - 1].Imaginary.AlmostEqual(0, 1))
                {
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                // alpha_(jk+1) = q^T_1 r_((j-1)k+k) / c_((j-1)k+k)
                var alpha = _startingVectors[0].DotProduct(residuals) / c[k - 1];

                // u_(jk+1) = r_((j-1)k+k) - alpha_(jk+1) w_((j-1)k+k)
                w[k - 1].Multiply(-alpha, temp);
                residuals.Add(temp, u);

                // SOLVE M u~_(jk+1) = u_(jk+1)
                _preconditioner.Approximate(u, temp1);
                temp1.CopyTo(utemp);

                // rho_(j+1) = -u^t_(jk+1) A u~_(jk+1) / ||A u~_(jk+1)||^2
                matrix.Multiply(temp1, temp);
                var rho = temp.DotProduct(temp);

                // If rho is zero then temp is a zero vector and we're probably
                // about to have zero residuals (i.e. an exact solution).
                // So set rho to 1.0 because in the next step it will turn to zero.
                if (rho.Real.AlmostEqual(0, 1) && rho.Imaginary.AlmostEqual(0, 1))
                {
                    rho = 1.0;
                }

                rho = -u.DotProduct(temp) / rho;

                // r_(jk+1) = rho_(j+1) A u~_(jk+1) + u_(jk+1)
                u.CopyTo(residuals);

                // Reuse temp
                temp.Multiply(rho, temp);
                residuals.Add(temp, temp2);
                temp2.CopyTo(residuals);

                // x_(jk+1) = x_((j-1)k_k) - rho_(j+1) u~_(jk+1) + alpha_(jk+1) g~_((j-1)k+k)
                utemp.Multiply(-rho, temp);
                xtemp.Add(temp, temp2);
                temp2.CopyTo(xtemp);

                gtemp.Multiply(alpha, gtemp);
                xtemp.Add(gtemp, temp2);
                temp2.CopyTo(xtemp);

                // Check convergence and stop if we are converged.
                if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                {
                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, xtemp, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                    {
                        // We're all good now.
                        // Exit from the while loop.
                        break;
                    }
                }

                // FOR (i = 1,2, ...., k)
                for (var i = 0; i < k; i++)
                {
                    // z_d = u_(jk+1)
                    u.CopyTo(zd);

                    // z_g = r_(jk+i)
                    residuals.CopyTo(zg);

                    // z_w = 0
                    zw.Clear();

                    // FOR (s = i, ...., k-1) AND j >= 1
                    Complex beta;
                    if (iterationNumber >= 1)
                    {
                        for (var s = i; s < k - 1; s++)
                        {
                            // beta^(jk+i)_((j-1)k+s) = -q^t_(s+1) z_d / c_((j-1)k+s)
                            beta = -_startingVectors[s + 1].DotProduct(zd) / c[s];

                            // z_d = z_d + beta^(jk+i)_((j-1)k+s) d_((j-1)k+s)
                            d[s].Multiply(beta, temp);
                            zd.Add(temp, temp2);
                            temp2.CopyTo(zd);

                            // z_g = z_g + beta^(jk+i)_((j-1)k+s) g_((j-1)k+s)
                            g[s].Multiply(beta, temp);
                            zg.Add(temp, temp2);
                            temp2.CopyTo(zg);

                            // z_w = z_w + beta^(jk+i)_((j-1)k+s) w_((j-1)k+s)
                            w[s].Multiply(beta, temp);
                            zw.Add(temp, temp2);
                            temp2.CopyTo(zw);
                        }
                    }

                    beta = rho * c[k - 1];
                    if (beta.Real.AlmostEqual(0, 1) && beta.Imaginary.AlmostEqual(0, 1))
                    {
                        throw new Exception("Iterative solver experience a numerical break down");
                    }

                    // beta^(jk+i)_((j-1)k+k) = -(q^T_1 (r_(jk+1) + rho_(j+1) z_w)) / (rho_(j+1) c_((j-1)k+k))
                    zw.Multiply(rho, temp2);
                    residuals.Add(temp2, temp);
                    beta = -_startingVectors[0].DotProduct(temp) / beta;

                    // z_g = z_g + beta^(jk+i)_((j-1)k+k) g_((j-1)k+k)
                    g[k - 1].Multiply(beta, temp);
                    zg.Add(temp, temp2);
                    temp2.CopyTo(zg);

                    // z_w = rho_(j+1) (z_w + beta^(jk+i)_((j-1)k+k) w_((j-1)k+k))
                    w[k - 1].Multiply(beta, temp);
                    zw.Add(temp, temp2);
                    temp2.CopyTo(zw);
                    zw.Multiply(rho, zw);

                    // z_d = r_(jk+i) + z_w
                    residuals.Add(zw, zd);

                    // FOR (s = 1, ... i - 1)
                    for (var s = 0; s < i - 1; s++)
                    {
                        // beta^(jk+i)_(jk+s) = -q^T_s+1 z_d / c_(jk+s)
                        beta = -_startingVectors[s + 1].DotProduct(zd) / c[s];

                        // z_d = z_d + beta^(jk+i)_(jk+s) * d_(jk+s)
                        d[s].Multiply(beta, temp);
                        zd.Add(temp, temp2);
                        temp2.CopyTo(zd);

                        // z_g = z_g + beta^(jk+i)_(jk+s) * g_(jk+s)
                        g[s].Multiply(beta, temp);
                        zg.Add(temp, temp2);
                        temp2.CopyTo(zg);
                    }

                    // d_(jk+i) = z_d - u_(jk+i)
                    zd.Subtract(u, d[i]);

                    // g_(jk+i) = z_g + z_w
                    zg.Add(zw, g[i]);

                    // IF (i < k - 1)
                    if (i < k - 1)
                    {
                        // c_(jk+1) = q^T_i+1 d_(jk+i)
                        c[i] = _startingVectors[i + 1].DotProduct(d[i]);
                        if (c[i].Real.AlmostEqual(0, 1) && c[i].Imaginary.AlmostEqual(0, 1))
                        {
                            throw new Exception("Iterative solver experience a numerical break down");
                        }

                        // alpha_(jk+i+1) = q^T_(i+1) u_(jk+i) / c_(jk+i)
                        alpha = _startingVectors[i + 1].DotProduct(u) / c[i];

                        // u_(jk+i+1) = u_(jk+i) - alpha_(jk+i+1) d_(jk+i)
                        d[i].Multiply(-alpha, temp);
                        u.Add(temp, temp2);
                        temp2.CopyTo(u);

                        // SOLVE M g~_(jk+i) = g_(jk+i)
                        _preconditioner.Approximate(g[i], gtemp);

                        // x_(jk+i+1) = x_(jk+i) + rho_(j+1) alpha_(jk+i+1) g~_(jk+i)
                        gtemp.Multiply(rho * alpha, temp);
                        xtemp.Add(temp, temp2);
                        temp2.CopyTo(xtemp);

                        // w_(jk+i) = A g~_(jk+i)
                        matrix.Multiply(gtemp, w[i]);

                        // r_(jk+i+1) = r_(jk+i) - rho_(j+1) alpha_(jk+i+1) w_(jk+i)
                        w[i].Multiply(-rho * alpha, temp);
                        residuals.Add(temp, temp2);
                        temp2.CopyTo(residuals);

                        // We can check the residuals here if they're close
                        if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                        {
                            // Recalculate the residuals and go round again. This is done to ensure that
                            // we have the proper residuals.
                            CalculateTrueResidual(matrix, residuals, xtemp, input);
                        }
                    }
                } // END ITERATION OVER i

                iterationNumber++;
            }

            // copy the temporary result to the real result vector
            xtemp.CopyTo(result);
        }
Example #23
0
        static Tuple <double, double> RunPLAvsSVM(int experiments, int points)
        {
            const int TEST_POINTS = 10000;
            Random    rnd         = new Random();

            long svmWins = 0, svCount = 0;

            for (int i = 1; i <= experiments; i++)
            {
                //pick a random line y = a * x + b
                double x1 = rnd.NextDouble(), y1 = rnd.NextDouble(), x2 = rnd.NextDouble(), y2 = rnd.NextDouble();
                var    Wf = new DenseVector(3);
                Wf[0] = 1;
                Wf[1] = (y1 - y2) / (x1 * y2 - y1 * x2);
                Wf[2] = (x2 - x1) / (x1 * y2 - y1 * x2);
                Func <MathNet.Numerics.LinearAlgebra.Generic.Vector <double>, int> f = x => Wf.DotProduct(x) >= 0 ? 1 : -1;

                //generate training set of N random points
                var X = new DenseMatrix(points, 3);
                do
                {
                    for (int j = 0; j < points; j++)
                    {
                        X[j, 0] = 1;
                        X[j, 1] = rnd.NextDouble() * 2 - 1;
                        X[j, 2] = rnd.NextDouble() * 2 - 1;
                    }
                }while (Enumerable.Range(0, X.RowCount).All(j => f(X.Row(0)) == f(X.Row(j))));

                var W = new DenseVector(3);
                Func <MathNet.Numerics.LinearAlgebra.Generic.Vector <double>, int> h = x => W.DotProduct(x) >= 0 ? 1 : -1;

                //run Perceptron
                int k = 1;
                while (Enumerable.Range(0, points).Any(j => h(X.Row(j)) != f(X.Row(j))))
                {
                    //find all misclasified points
                    int[] M = Enumerable.Range(0, points).Where(j => h(X.Row(j)) != f(X.Row(j))).ToArray();
                    int   m = M[rnd.Next(0, M.Length)];

                    int sign = f(X.Row(m));
                    W[0] += sign;
                    W[1] += sign * X[m, 1];
                    W[2] += sign * X[m, 2];
                    k++;
                }

                //calculate P[f(Xtest) != h(Xtest)]
                DenseVector Xtest = new DenseVector(3);
                Xtest[0] = 1;
                int matches = 0;
                for (int j = 0; j < TEST_POINTS; j++)
                {
                    Xtest[1] = rnd.NextDouble() * 2 - 1;
                    Xtest[2] = rnd.NextDouble() * 2 - 1;
                    if (f(Xtest) == h(Xtest))
                    {
                        matches++;
                    }
                }
                double Ppla = (matches + 0.0) / TEST_POINTS;

                //Run SVM
                var prob = new svm_problem()
                {
                    x = Enumerable.Range(0, points).Select(j =>
                                                           new svm_node[] {
                        new svm_node()
                        {
                            index = 0, value = X[j, 1]
                        },
                        new svm_node()
                        {
                            index = 1, value = X[j, 2]
                        }
                    }).ToArray(),
                    y = Enumerable.Range(0, points).Select(j => (double)f(X.Row(j))).ToArray(),
                    l = points
                };

                var model = svm.svm_train(prob, new svm_parameter()
                {
                    svm_type    = (int)SvmType.C_SVC,
                    kernel_type = (int)KernelType.LINEAR,
                    C           = 1000000,
                    eps         = 0.001,
                    shrinking   = 0
                });

                //calculate P[f(Xtest) != h_svm(Xtest)]
                svm_node[] Xsvm = new svm_node[] {
                    new svm_node()
                    {
                        index = 0, value = 1.0
                    },
                    new svm_node()
                    {
                        index = 1, value = 1.0
                    }
                };
                matches = 0;

                for (int j = 0; j < TEST_POINTS; j++)
                {
                    Xtest[1]      = rnd.NextDouble() * 2 - 1;
                    Xsvm[0].value = Xtest[1];
                    Xtest[2]      = rnd.NextDouble() * 2 - 1;
                    Xsvm[1].value = Xtest[2];
                    if (f(Xtest) == (svm.svm_predict(model, Xsvm) > 0 ? 1 : -1))
                    {
                        matches++;
                    }
                }
                double Psvm = (matches + 0.0) / TEST_POINTS;

                svCount += model.l;
                if (Psvm >= Ppla)
                {
                    svmWins++;
                }
            }

            return(Tuple.Create((svmWins + 0.0) / experiments, (svCount + 0.0) / experiments));
        }