private static void ReconstructMinorCycle(MeasurementData input, GriddingConstants c, int cutFactor, float[,] fullPsf, string folder, string file, int minorCycles, float searchPercent, bool useAccelerated = true, int blockSize = 1, int maxCycle = 6) { var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var sidelobeHalf = PSF.CalcMaxSidelobe(fullPsf, 2); var random = new Random(123); var approx = new ApproxFast(totalSize, psfCut, 8, blockSize, 0.1f, searchPercent, false, useAccelerated); using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, fullPsf)) { var currentBMapCalculator = bMapCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * maxLipschitz); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; ApproxFast.LAMBDA_TEST = lambdaTrue; ApproxFast.ALPHA_TEST = alpha; var switchedToOtherPsf = false; var writer = new StreamWriter(folder + "/" + file + "_lambda.txt"); var data = new ApproxFast.TestingData(new StreamWriter(folder + "/" + file + ".txt")); var xImage = new float[c.GridSize, c.GridSize]; var residualVis = input.Visibilities; for (int cycle = 0; cycle < maxCycle; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; //var residualsConvolver = new PaddedConvolver(PSF.CalcPaddedFourierConvolution(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1))); for (int minorCycle = 0; minorCycle < minorCycles; minorCycle++) { FitsIO.Write(dirtyImage, folder + "/dirtyMinor_" + minorCycle + ".fits"); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentBMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } writer.WriteLine(cycle + ";" + minorCycle + ";" + currentLambda + ";" + minLambda); writer.Flush(); approx.DeconvolveTest(data, cycle, minorCycle, xImage, dirtyImage, psfCut, fullPsf, currentLambda, alpha, random, 15, 1e-5f); FitsIO.Write(xImage, folder + "/xImageMinor_" + minorCycle + ".fits"); if (currentLambda == lambda | currentLambda == minLambda) { break; } Console.WriteLine("resetting residuals!!"); //reset dirtyImage with full PSF var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } if (currentLambda == lambda & !switchedToOtherPsf) { approx.ResetAMap(fullPsf); currentBMapCalculator = bMapCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; writer.WriteLine("switched"); writer.Flush(); } FitsIO.Write(xImage, folder + "/xImage_" + cycle + ".fits"); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies); residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags); } writer.Close(); } }
private static void Reconstruct(Data input, int cutFactor, float[,] fullPsf, string folder, string file, int threads, int blockSize, bool accelerated, float randomPercent, float searchPercent) { var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var random = new Random(123); var approx = new ApproxFast(totalSize, psfCut, threads, blockSize, randomPercent, searchPercent, false, true); var maxLipschitzCut = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * PSF.CalcMaxLipschitz(psfCut)); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; ApproxFast.LAMBDA_TEST = lambdaTrue; ApproxFast.ALPHA_TEST = alpha; var switchedToOtherPsf = false; var writer = new StreamWriter(folder + "/" + file + "_lambda.txt"); var data = new ApproxFast.TestingData(new StreamWriter(folder + "/" + file + ".txt")); var xImage = new float[input.c.GridSize, input.c.GridSize]; var residualVis = input.visibilities; for (int cycle = 0; cycle < 7; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitzCut), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); writer.WriteLine("cycle" + ";" + currentLambda); writer.Flush(); approx.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, fullPsf, currentLambda, alpha, random, 15, 1e-5f); FitsIO.Write(xImage, folder + "/xImage_" + cycle + ".fits"); if (currentLambda == lambda & !switchedToOtherPsf) { approx.ResetAMap(fullPsf); lambda = lambdaTrue; switchedToOtherPsf = true; writer.WriteLine("switched"); writer.Flush(); } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies); residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags); } writer.Close(); }