private static void ReconstructMinorCycle(MeasurementData input, GriddingConstants c, int cutFactor, float[,] fullPsf, string folder, string file, int minorCycles, float searchPercent, bool useAccelerated = true, int blockSize = 1, int maxCycle = 6)
        {
            var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies);

            var totalSize    = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var psfCut       = PSF.Cut(fullPsf, cutFactor);
            var maxSidelobe  = PSF.CalcMaxSidelobe(fullPsf, cutFactor);
            var sidelobeHalf = PSF.CalcMaxSidelobe(fullPsf, 2);
            var random       = new Random(123);
            var approx       = new ApproxFast(totalSize, psfCut, 8, blockSize, 0.1f, searchPercent, false, useAccelerated);

            using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))))
                using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1))))
                    using (var residualsConvolver = new PaddedConvolver(totalSize, fullPsf))
                    {
                        var currentBMapCalculator = bMapCalculator;

                        var maxLipschitz = PSF.CalcMaxLipschitz(psfCut);
                        var lambda       = (float)(LAMBDA * maxLipschitz);
                        var lambdaTrue   = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf));
                        var alpha        = ALPHA;
                        ApproxFast.LAMBDA_TEST = lambdaTrue;
                        ApproxFast.ALPHA_TEST  = alpha;

                        var switchedToOtherPsf = false;
                        var writer             = new StreamWriter(folder + "/" + file + "_lambda.txt");
                        var data        = new ApproxFast.TestingData(new StreamWriter(folder + "/" + file + ".txt"));
                        var xImage      = new float[c.GridSize, c.GridSize];
                        var residualVis = input.Visibilities;
                        for (int cycle = 0; cycle < maxCycle; cycle++)
                        {
                            Console.WriteLine("cycle " + cycle);
                            var dirtyGrid  = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies);
                            var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount);
                            FFT.Shift(dirtyImage);
                            FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits");

                            var minLambda     = 0.0f;
                            var dirtyCopy     = Copy(dirtyImage);
                            var xCopy         = Copy(xImage);
                            var currentLambda = 0f;
                            //var residualsConvolver = new PaddedConvolver(PSF.CalcPaddedFourierConvolution(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)));
                            for (int minorCycle = 0; minorCycle < minorCycles; minorCycle++)
                            {
                                FitsIO.Write(dirtyImage, folder + "/dirtyMinor_" + minorCycle + ".fits");
                                var maxDirty         = Residuals.GetMax(dirtyImage);
                                var bMap             = currentBMapCalculator.Convolve(dirtyImage);
                                var maxB             = Residuals.GetMax(bMap);
                                var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f);
                                var currentSideLobe  = maxB * maxSidelobe * correctionFactor;
                                currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda);

                                if (minorCycle == 0)
                                {
                                    minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha);
                                }

                                if (currentLambda < minLambda)
                                {
                                    currentLambda = minLambda;
                                }

                                writer.WriteLine(cycle + ";" + minorCycle + ";" + currentLambda + ";" + minLambda);
                                writer.Flush();
                                approx.DeconvolveTest(data, cycle, minorCycle, xImage, dirtyImage, psfCut, fullPsf, currentLambda, alpha, random, 15, 1e-5f);
                                FitsIO.Write(xImage, folder + "/xImageMinor_" + minorCycle + ".fits");

                                if (currentLambda == lambda | currentLambda == minLambda)
                                {
                                    break;
                                }

                                Console.WriteLine("resetting residuals!!");
                                //reset dirtyImage with full PSF
                                var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)];
                                Parallel.For(0, xCopy.GetLength(0), (i) =>
                                {
                                    for (int j = 0; j < xCopy.GetLength(1); j++)
                                    {
                                        residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j];
                                    }
                                });
                                residualsConvolver.ConvolveInPlace(residualsUpdate);

                                Parallel.For(0, xCopy.GetLength(0), (i) =>
                                {
                                    for (int j = 0; j < xCopy.GetLength(1); j++)
                                    {
                                        dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j];
                                    }
                                });
                            }

                            if (currentLambda == lambda & !switchedToOtherPsf)
                            {
                                approx.ResetAMap(fullPsf);
                                currentBMapCalculator = bMapCalculator2;
                                lambda             = lambdaTrue;
                                switchedToOtherPsf = true;
                                writer.WriteLine("switched");
                                writer.Flush();
                            }

                            FitsIO.Write(xImage, folder + "/xImage_" + cycle + ".fits");

                            FFT.Shift(xImage);
                            var xGrid = FFT.Forward(xImage);
                            FFT.Shift(xImage);
                            var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies);
                            residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags);
                        }

                        writer.Close();
                    }
        }
        private static void Reconstruct(Data input, int cutFactor, float[,] fullPsf, string folder, string file, int threads, int blockSize, bool accelerated, float randomPercent, float searchPercent)
        {
            var totalSize      = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize);
            var psfCut         = PSF.Cut(fullPsf, cutFactor);
            var maxSidelobe    = PSF.CalcMaxSidelobe(fullPsf, cutFactor);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
            var random         = new Random(123);
            var approx         = new ApproxFast(totalSize, psfCut, threads, blockSize, randomPercent, searchPercent, false, true);

            var maxLipschitzCut = PSF.CalcMaxLipschitz(psfCut);
            var lambda          = (float)(LAMBDA * PSF.CalcMaxLipschitz(psfCut));
            var lambdaTrue      = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf));
            var alpha           = ALPHA;

            ApproxFast.LAMBDA_TEST = lambdaTrue;
            ApproxFast.ALPHA_TEST  = alpha;

            var switchedToOtherPsf = false;
            var writer             = new StreamWriter(folder + "/" + file + "_lambda.txt");
            var data        = new ApproxFast.TestingData(new StreamWriter(folder + "/" + file + ".txt"));
            var xImage      = new float[input.c.GridSize, input.c.GridSize];
            var residualVis = input.visibilities;

            for (int cycle = 0; cycle < 7; cycle++)
            {
                Console.WriteLine("cycle " + cycle);
                var dirtyGrid  = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies);
                var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits");

                var maxDirty         = Residuals.GetMax(dirtyImage);
                var bMap             = bMapCalculator.Convolve(dirtyImage);
                var maxB             = Residuals.GetMax(bMap);
                var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitzCut), 1.0f);
                var currentSideLobe  = maxB * maxSidelobe * correctionFactor;
                var currentLambda    = (float)Math.Max(currentSideLobe / alpha, lambda);

                writer.WriteLine("cycle" + ";" + currentLambda);
                writer.Flush();

                approx.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, fullPsf, currentLambda, alpha, random, 15, 1e-5f);
                FitsIO.Write(xImage, folder + "/xImage_" + cycle + ".fits");

                if (currentLambda == lambda & !switchedToOtherPsf)
                {
                    approx.ResetAMap(fullPsf);
                    lambda             = lambdaTrue;
                    switchedToOtherPsf = true;
                    writer.WriteLine("switched");
                    writer.Flush();
                }

                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies);
                residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags);
            }
            writer.Close();
        }