Ejemplo n.º 1
0
        /*************************************************************************
        Training neural networks ensemble using  bootstrap  aggregating (bagging).
        Modified Levenberg-Marquardt algorithm is used as base training method.

        INPUT PARAMETERS:
            Ensemble    -   model with initialized geometry
            XY          -   training set
            NPoints     -   training set size
            Decay       -   weight decay coefficient, >=0.001
            Restarts    -   restarts, >0.

        OUTPUT PARAMETERS:
            Ensemble    -   trained model
            Info        -   return code:
                            * -2, if there is a point with class number
                                  outside of [0..NClasses-1].
                            * -1, if incorrect parameters was passed
                                  (NPoints<0, Restarts<1).
                            *  2, if task has been solved.
            Rep         -   training report.
            OOBErrors   -   out-of-bag generalization error estimate

          -- ALGLIB --
             Copyright 17.02.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void mlpebagginglm(ref mlpensemble ensemble,
            ref double[,] xy,
            int npoints,
            double decay,
            int restarts,
            ref int info,
            ref mlptrain.mlpreport rep,
            ref mlptrain.mlpcvreport ooberrors)
        {
            mlpebagginginternal(ref ensemble, ref xy, npoints, decay, restarts, 0.0, 0, true, ref info, ref rep, ref ooberrors);
        }
Ejemplo n.º 2
0
        /*************************************************************************
        Internal bagging subroutine.

          -- ALGLIB --
             Copyright 19.02.2009 by Bochkanov Sergey
        *************************************************************************/
        private static void mlpebagginginternal(ref mlpensemble ensemble,
            ref double[,] xy,
            int npoints,
            double decay,
            int restarts,
            double wstep,
            int maxits,
            bool lmalgorithm,
            ref int info,
            ref mlptrain.mlpreport rep,
            ref mlptrain.mlpcvreport ooberrors)
        {
            double[,] xys = new double[0,0];
            bool[] s = new bool[0];
            double[,] oobbuf = new double[0,0];
            int[] oobcntbuf = new int[0];
            double[] x = new double[0];
            double[] y = new double[0];
            double[] dy = new double[0];
            double[] dsbuf = new double[0];
            int nin = 0;
            int nout = 0;
            int ccnt = 0;
            int pcnt = 0;
            int i = 0;
            int j = 0;
            int k = 0;
            double v = 0;
            mlptrain.mlpreport tmprep = new mlptrain.mlpreport();
            mlpbase.multilayerperceptron network = new mlpbase.multilayerperceptron();
            int i_ = 0;
            int i1_ = 0;

            
            //
            // Test for inputs
            //
            if( !lmalgorithm & (double)(wstep)==(double)(0) & maxits==0 )
            {
                info = -8;
                return;
            }
            if( npoints<=0 | restarts<1 | (double)(wstep)<(double)(0) | maxits<0 )
            {
                info = -1;
                return;
            }
            if( ensemble.issoftmax )
            {
                for(i=0; i<=npoints-1; i++)
                {
                    if( (int)Math.Round(xy[i,ensemble.nin])<0 | (int)Math.Round(xy[i,ensemble.nin])>=ensemble.nout )
                    {
                        info = -2;
                        return;
                    }
                }
            }
            
            //
            // allocate temporaries
            //
            info = 2;
            rep.ngrad = 0;
            rep.nhess = 0;
            rep.ncholesky = 0;
            ooberrors.relclserror = 0;
            ooberrors.avgce = 0;
            ooberrors.rmserror = 0;
            ooberrors.avgerror = 0;
            ooberrors.avgrelerror = 0;
            nin = ensemble.nin;
            nout = ensemble.nout;
            if( ensemble.issoftmax )
            {
                ccnt = nin+1;
                pcnt = nin;
            }
            else
            {
                ccnt = nin+nout;
                pcnt = nin+nout;
            }
            xys = new double[npoints-1+1, ccnt-1+1];
            s = new bool[npoints-1+1];
            oobbuf = new double[npoints-1+1, nout-1+1];
            oobcntbuf = new int[npoints-1+1];
            x = new double[nin-1+1];
            y = new double[nout-1+1];
            if( ensemble.issoftmax )
            {
                dy = new double[0+1];
            }
            else
            {
                dy = new double[nout-1+1];
            }
            for(i=0; i<=npoints-1; i++)
            {
                for(j=0; j<=nout-1; j++)
                {
                    oobbuf[i,j] = 0;
                }
            }
            for(i=0; i<=npoints-1; i++)
            {
                oobcntbuf[i] = 0;
            }
            mlpbase.mlpunserialize(ref ensemble.serializedmlp, ref network);
            
            //
            // main bagging cycle
            //
            for(k=0; k<=ensemble.ensemblesize-1; k++)
            {
                
                //
                // prepare dataset
                //
                for(i=0; i<=npoints-1; i++)
                {
                    s[i] = false;
                }
                for(i=0; i<=npoints-1; i++)
                {
                    j = AP.Math.RandomInteger(npoints);
                    s[j] = true;
                    for(i_=0; i_<=ccnt-1;i_++)
                    {
                        xys[i,i_] = xy[j,i_];
                    }
                }
                
                //
                // train
                //
                if( lmalgorithm )
                {
                    mlptrain.mlptrainlm(ref network, ref xys, npoints, decay, restarts, ref info, ref tmprep);
                }
                else
                {
                    mlptrain.mlptrainlbfgs(ref network, ref xys, npoints, decay, restarts, wstep, maxits, ref info, ref tmprep);
                }
                if( info<0 )
                {
                    return;
                }
                
                //
                // save results
                //
                rep.ngrad = rep.ngrad+tmprep.ngrad;
                rep.nhess = rep.nhess+tmprep.nhess;
                rep.ncholesky = rep.ncholesky+tmprep.ncholesky;
                i1_ = (0) - (k*ensemble.wcount);
                for(i_=k*ensemble.wcount; i_<=(k+1)*ensemble.wcount-1;i_++)
                {
                    ensemble.weights[i_] = network.weights[i_+i1_];
                }
                i1_ = (0) - (k*pcnt);
                for(i_=k*pcnt; i_<=(k+1)*pcnt-1;i_++)
                {
                    ensemble.columnmeans[i_] = network.columnmeans[i_+i1_];
                }
                i1_ = (0) - (k*pcnt);
                for(i_=k*pcnt; i_<=(k+1)*pcnt-1;i_++)
                {
                    ensemble.columnsigmas[i_] = network.columnsigmas[i_+i1_];
                }
                
                //
                // OOB estimates
                //
                for(i=0; i<=npoints-1; i++)
                {
                    if( !s[i] )
                    {
                        for(i_=0; i_<=nin-1;i_++)
                        {
                            x[i_] = xy[i,i_];
                        }
                        mlpbase.mlpprocess(ref network, ref x, ref y);
                        for(i_=0; i_<=nout-1;i_++)
                        {
                            oobbuf[i,i_] = oobbuf[i,i_] + y[i_];
                        }
                        oobcntbuf[i] = oobcntbuf[i]+1;
                    }
                }
            }
            
            //
            // OOB estimates
            //
            if( ensemble.issoftmax )
            {
                bdss.dserrallocate(nout, ref dsbuf);
            }
            else
            {
                bdss.dserrallocate(-nout, ref dsbuf);
            }
            for(i=0; i<=npoints-1; i++)
            {
                if( oobcntbuf[i]!=0 )
                {
                    v = (double)(1)/(double)(oobcntbuf[i]);
                    for(i_=0; i_<=nout-1;i_++)
                    {
                        y[i_] = v*oobbuf[i,i_];
                    }
                    if( ensemble.issoftmax )
                    {
                        dy[0] = xy[i,nin];
                    }
                    else
                    {
                        i1_ = (nin) - (0);
                        for(i_=0; i_<=nout-1;i_++)
                        {
                            dy[i_] = v*xy[i,i_+i1_];
                        }
                    }
                    bdss.dserraccumulate(ref dsbuf, ref y, ref dy);
                }
            }
            bdss.dserrfinish(ref dsbuf);
            ooberrors.relclserror = dsbuf[0];
            ooberrors.avgce = dsbuf[1];
            ooberrors.rmserror = dsbuf[2];
            ooberrors.avgerror = dsbuf[3];
            ooberrors.avgrelerror = dsbuf[4];
        }
Ejemplo n.º 3
0
        /*************************************************************************
        Training neural networks ensemble using  bootstrap  aggregating (bagging).
        L-BFGS algorithm is used as base training method.

        INPUT PARAMETERS:
            Ensemble    -   model with initialized geometry
            XY          -   training set
            NPoints     -   training set size
            Decay       -   weight decay coefficient, >=0.001
            Restarts    -   restarts, >0.
            WStep       -   stopping criterion, same as in MLPTrainLBFGS
            MaxIts      -   stopping criterion, same as in MLPTrainLBFGS

        OUTPUT PARAMETERS:
            Ensemble    -   trained model
            Info        -   return code:
                            * -8, if both WStep=0 and MaxIts=0
                            * -2, if there is a point with class number
                                  outside of [0..NClasses-1].
                            * -1, if incorrect parameters was passed
                                  (NPoints<0, Restarts<1).
                            *  2, if task has been solved.
            Rep         -   training report.
            OOBErrors   -   out-of-bag generalization error estimate

          -- ALGLIB --
             Copyright 17.02.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void mlpebagginglbfgs(ref mlpensemble ensemble,
            ref double[,] xy,
            int npoints,
            double decay,
            int restarts,
            double wstep,
            int maxits,
            ref int info,
            ref mlptrain.mlpreport rep,
            ref mlptrain.mlpcvreport ooberrors)
        {
            mlpebagginginternal(ref ensemble, ref xy, npoints, decay, restarts, wstep, maxits, false, ref info, ref rep, ref ooberrors);
        }
Ejemplo n.º 4
-1
        /*************************************************************************
        Training neural networks ensemble using early stopping.

        INPUT PARAMETERS:
            Ensemble    -   model with initialized geometry
            XY          -   training set
            NPoints     -   training set size
            Decay       -   weight decay coefficient, >=0.001
            Restarts    -   restarts, >0.

        OUTPUT PARAMETERS:
            Ensemble    -   trained model
            Info        -   return code:
                            * -2, if there is a point with class number
                                  outside of [0..NClasses-1].
                            * -1, if incorrect parameters was passed
                                  (NPoints<0, Restarts<1).
                            *  6, if task has been solved.
            Rep         -   training report.
            OOBErrors   -   out-of-bag generalization error estimate

          -- ALGLIB --
             Copyright 10.03.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void mlpetraines(ref mlpensemble ensemble,
            ref double[,] xy,
            int npoints,
            double decay,
            int restarts,
            ref int info,
            ref mlptrain.mlpreport rep)
        {
            int i = 0;
            int k = 0;
            int ccount = 0;
            int pcount = 0;
            double[,] trnxy = new double[0,0];
            double[,] valxy = new double[0,0];
            int trnsize = 0;
            int valsize = 0;
            mlpbase.multilayerperceptron network = new mlpbase.multilayerperceptron();
            int tmpinfo = 0;
            mlptrain.mlpreport tmprep = new mlptrain.mlpreport();
            int i_ = 0;
            int i1_ = 0;

            if( npoints<2 | restarts<1 | (double)(decay)<(double)(0) )
            {
                info = -1;
                return;
            }
            if( ensemble.issoftmax )
            {
                for(i=0; i<=npoints-1; i++)
                {
                    if( (int)Math.Round(xy[i,ensemble.nin])<0 | (int)Math.Round(xy[i,ensemble.nin])>=ensemble.nout )
                    {
                        info = -2;
                        return;
                    }
                }
            }
            info = 6;
            
            //
            // allocate
            //
            if( ensemble.issoftmax )
            {
                ccount = ensemble.nin+1;
                pcount = ensemble.nin;
            }
            else
            {
                ccount = ensemble.nin+ensemble.nout;
                pcount = ensemble.nin+ensemble.nout;
            }
            trnxy = new double[npoints-1+1, ccount-1+1];
            valxy = new double[npoints-1+1, ccount-1+1];
            mlpbase.mlpunserialize(ref ensemble.serializedmlp, ref network);
            rep.ngrad = 0;
            rep.nhess = 0;
            rep.ncholesky = 0;
            
            //
            // train networks
            //
            for(k=0; k<=ensemble.ensemblesize-1; k++)
            {
                
                //
                // Split set
                //
                do
                {
                    trnsize = 0;
                    valsize = 0;
                    for(i=0; i<=npoints-1; i++)
                    {
                        if( (double)(AP.Math.RandomReal())<(double)(0.66) )
                        {
                            
                            //
                            // Assign sample to training set
                            //
                            for(i_=0; i_<=ccount-1;i_++)
                            {
                                trnxy[trnsize,i_] = xy[i,i_];
                            }
                            trnsize = trnsize+1;
                        }
                        else
                        {
                            
                            //
                            // Assign sample to validation set
                            //
                            for(i_=0; i_<=ccount-1;i_++)
                            {
                                valxy[valsize,i_] = xy[i,i_];
                            }
                            valsize = valsize+1;
                        }
                    }
                }
                while( ! (trnsize!=0 & valsize!=0) );
                
                //
                // Train
                //
                mlptrain.mlptraines(ref network, ref trnxy, trnsize, ref valxy, valsize, decay, restarts, ref tmpinfo, ref tmprep);
                if( tmpinfo<0 )
                {
                    info = tmpinfo;
                    return;
                }
                
                //
                // save results
                //
                i1_ = (0) - (k*ensemble.wcount);
                for(i_=k*ensemble.wcount; i_<=(k+1)*ensemble.wcount-1;i_++)
                {
                    ensemble.weights[i_] = network.weights[i_+i1_];
                }
                i1_ = (0) - (k*pcount);
                for(i_=k*pcount; i_<=(k+1)*pcount-1;i_++)
                {
                    ensemble.columnmeans[i_] = network.columnmeans[i_+i1_];
                }
                i1_ = (0) - (k*pcount);
                for(i_=k*pcount; i_<=(k+1)*pcount-1;i_++)
                {
                    ensemble.columnsigmas[i_] = network.columnsigmas[i_+i1_];
                }
                rep.ngrad = rep.ngrad+tmprep.ngrad;
                rep.nhess = rep.nhess+tmprep.nhess;
                rep.ncholesky = rep.ncholesky+tmprep.ncholesky;
            }
        }