Ejemplo n.º 1
0
        public static void Main()
        {
            // STEP 4: Read the data
            string        dataFilePath = HttpContext.Current.Server.MapPath("~/DAL/svm/");
            var           dataTable    = DataTable.New.ReadCsv(dataFilePath + "Data.csv");
            List <string> x            = dataTable.Rows.Select(row => row["Text"]).ToList();

            double[] y = dataTable.Rows.Select(row => double.Parse(row["Category"]))
                         .ToArray();

            vocabulary = x.SelectMany(GetWords).Distinct().OrderBy(word => word).ToList();

            var problemBuilder = new TextClassificationProblemBuilder();
            var problem        = problemBuilder.CreateProblem(x, y, vocabulary.ToList());

            // If you want you can save this problem with :
            // ProblemHelper.WriteProblem(@"D:\MACHINE_LEARNING\SVM\Tutorial\sunnyData.problem", problem);
            // And then load it again using:
            // var problem = ProblemHelper.ReadProblem(@"D:\MACHINE_LEARNING\SVM\Tutorial\sunnyData.problem");

            const int C = 1;

            model = new C_SVC(problem, KernelHelper.LinearKernel(), C);

            var accuracy = model.GetCrossValidationAccuracy(10);

            Console.Clear();
            Console.WriteLine(new string('=', 50));
            Console.WriteLine("Accuracy of the model is {0:P}", accuracy);
            model.Export(string.Format(dataFilePath + "model_{0}_accuracy.model", accuracy));

            Console.WriteLine(new string('=', 50));
            Console.WriteLine("The model is trained. \r\nEnter a sentence to make a prediction. (ex: sunny rainy sunny)");
            Console.WriteLine(new string('=', 50));
        }
Ejemplo n.º 2
0
        static void Main()
        {
            // STEP 4: Read the data
            const string  dataFilePath = @"D:\MACHINE_LEARNING\SVM\Tutorial\sunnyData.csv";
            var           dataTable    = DataTable.New.ReadCsv(dataFilePath);
            List <string> x            = dataTable.Rows.Select(row => row["Text"]).ToList();

            double[] y = dataTable.Rows.Select(row => double.Parse(row["IsSunny"]))
                         .ToArray();

            var vocabulary = x.SelectMany(GetWords).Distinct().OrderBy(word => word).ToList();

            var problemBuilder = new TextClassificationProblemBuilder();
            var problem        = problemBuilder.CreateProblem(x, y, vocabulary.ToList());

            // If you want you can save this problem with :
            // ProblemHelper.WriteProblem(@"D:\MACHINE_LEARNING\SVM\Tutorial\sunnyData.problem", problem);
            // And then load it again using:
            // var problem = ProblemHelper.ReadProblem(@"D:\MACHINE_LEARNING\SVM\Tutorial\sunnyData.problem");

            const int C     = 1;
            var       model = new C_SVC(problem, KernelHelper.LinearKernel(), C);



            var accuracy = model.GetCrossValidationAccuracy(10);

            Console.Clear();
            Console.WriteLine(new string('=', 50));
            Console.WriteLine("Accuracy of the model is {0:P}", accuracy);
            model.Export(string.Format(@"D:\MACHINE_LEARNING\SVM\Tutorial\model_{0}_accuracy.model", accuracy));

            Console.WriteLine(new string('=', 50));
            Console.WriteLine("The model is trained. \r\nEnter a sentence to make a prediction. (ex: sunny rainy sunny)");
            Console.WriteLine(new string('=', 50));

            string userInput;

            _predictionDictionary = new Dictionary <int, string> {
                { -1, "Rainy" }, { 1, "Sunny" }
            };
            do
            {
                userInput = Console.ReadLine();
                var newX = TextClassificationProblemBuilder.CreateNode(userInput, vocabulary);

                var predictedY = model.Predict(newX);
                Console.WriteLine("The prediction is {0}", _predictionDictionary[(int)predictedY]);
                Console.WriteLine(new string('=', 50));
            } while (userInput != "quit");

            Console.WriteLine("");
        }
Ejemplo n.º 3
0
        static void Main()
        {
            // STEP 4: Read the data
            const string dataFilePath = @"D:\MACHINE_LEARNING\SVM\Tutorial\sunnyData.csv"; 
            var dataTable = DataTable.New.ReadCsv(dataFilePath); 
            List<string> x = dataTable.Rows.Select(row => row["Text"]).ToList(); 
            double[] y = dataTable.Rows.Select(row => double.Parse(row["IsSunny"]))
                                       .ToArray();

            var vocabulary = x.SelectMany(GetWords).Distinct().OrderBy(word => word).ToList();
             
            var problemBuilder = new TextClassificationProblemBuilder(); 
            var problem = problemBuilder.CreateProblem(x, y, vocabulary.ToList());

            // If you want you can save this problem with : 
            // ProblemHelper.WriteProblem(@"D:\MACHINE_LEARNING\SVM\Tutorial\sunnyData.problem", problem);
            // And then load it again using:
            // var problem = ProblemHelper.ReadProblem(@"D:\MACHINE_LEARNING\SVM\Tutorial\sunnyData.problem");
             
            const int C = 1; 
            var model = new C_SVC(problem, KernelHelper.LinearKernel(), C);
         
          

            var accuracy = model.GetCrossValidationAccuracy(10);
            Console.Clear();
            Console.WriteLine(new string('=', 50));
            Console.WriteLine("Accuracy of the model is {0:P}", accuracy); 
            model.Export(string.Format(@"D:\MACHINE_LEARNING\SVM\Tutorial\model_{0}_accuracy.model", accuracy));

            Console.WriteLine(new string('=', 50));
            Console.WriteLine("The model is trained. \r\nEnter a sentence to make a prediction. (ex: sunny rainy sunny)");
            Console.WriteLine(new string('=', 50));

            string userInput;
            _predictionDictionary = new Dictionary<int, string> { { -1, "Rainy" }, { 1, "Sunny" } };
            do
            {
                userInput = Console.ReadLine(); 
                var newX = TextClassificationProblemBuilder.CreateNode(userInput, vocabulary);

                var predictedY = model.Predict(newX);
                Console.WriteLine("The prediction is {0}", _predictionDictionary[(int)predictedY]); 
                Console.WriteLine(new string('=', 50)); 
            } while (userInput != "quit");

            Console.WriteLine(""); 
        }