Ejemplo n.º 1
0
        private static Vector3D Halfway(Vector3D v1, Vector3D v2)
        {
            Vector3D v1_ = Sterographic.PlaneToSphereSafe(v1);
            Vector3D v2_ = Sterographic.PlaneToSphereSafe(v2);

            Vector3D result = (v1_ + v2_) / 2;

            result.Normalize();
            return(Sterographic.SphereToPlane(result));
        }
Ejemplo n.º 2
0
        public static Vector3D[] CalcViaProjections(Vector3D p1, Vector3D p2, Vector3D p3, int divisions, Geometry g)
        {
            if (g == Geometry.Euclidean)
            {
                throw new System.NotImplementedException();
            }

            Vector3D h1 = new Vector3D(), h2 = new Vector3D(), h3 = new Vector3D();

            if (g == Geometry.Hyperbolic)
            {
                h1 = Sterographic.PlaneToHyperboloid(p1);
                h2 = Sterographic.PlaneToHyperboloid(p2);
                h3 = Sterographic.PlaneToHyperboloid(p3);
            }
            else if (g == Geometry.Spherical)
            {
                h1 = Sterographic.PlaneToSphereSafe(p1);
                h2 = Sterographic.PlaneToSphereSafe(p2);
                h3 = Sterographic.PlaneToSphereSafe(p3);
            }

            List <Vector3D> temp = new List <Vector3D>();
            Segment         seg1 = Segment.Line(h1, h2);
            Segment         seg2 = Segment.Line(h3, h2);

            Vector3D[] s1 = seg1.Subdivide(divisions);
            Vector3D[] s2 = seg2.Subdivide(divisions);
            for (int i = 0; i < divisions; i++)
            {
                Segment seg = Segment.Line(s1[i], s2[i]);
                temp.AddRange(seg.Subdivide(divisions - i));
            }
            temp.Add(h2);

            List <Vector3D> result = new List <Vector3D>();

            foreach (Vector3D v in temp)
            {
                Vector3D copy = v;
                if (g == Geometry.Hyperbolic)
                {
                    Sterographic.NormalizeToHyperboloid(ref copy);
                    result.Add(Sterographic.HyperboloidToPlane(copy));
                }
                else if (g == Geometry.Spherical)
                {
                    copy.Normalize();
                    result.Add(Sterographic.SphereToPlane(copy));
                }
            }
            return(result.ToArray());
        }
Ejemplo n.º 3
0
        public static Vector3D Centroid(Geometry g, Vector3D[] conformalVerts)
        {
            if (g == Geometry.Euclidean)
            {
                Vector3D result = new Vector3D();
                foreach (Vector3D v in conformalVerts)
                {
                    result += v;
                }
                return(result / conformalVerts.Length);
            }

            Vector3D[] verts = conformalVerts.Select(v =>
            {
                switch (g)
                {
                case Geometry.Spherical:
                    return(Sterographic.PlaneToSphereSafe(v));

                case Geometry.Hyperbolic:
                    return(Sterographic.PlaneToHyperboloid(v));
                }

                throw new System.ArgumentException();
            }).ToArray();

            // https://math.stackexchange.com/a/2173370/300001
            Vector3D sum = new Vector3D();

            for (int i = 0; i < verts.Length; i++)
            {
                sum += verts[i];
            }
            Vector3D centroid = sum / Math.Sqrt(DotInGeometry(g, sum, sum));

            NormalizeInGeometry(g, ref centroid);

            switch (g)
            {
            case Geometry.Spherical:
                return(Sterographic.SphereToPlane(centroid));

            case Geometry.Hyperbolic:
                return(Sterographic.HyperboloidToPlane(centroid));
            }

            throw new System.ArgumentException();
        }
Ejemplo n.º 4
0
        private static void ProjectAndSave(List <Circle3D> circlesOnUnitSphere)
        {
            List <Circle3D> projected = new List <Circle3D>();

            foreach (Circle3D c in circlesOnUnitSphere)
            {
                Vector3D[] pp = c.RepresentativePoints.Select(p => Sterographic.SphereToPlane(p)).ToArray();

                Circle3D cProj = new Circle3D(pp[0], pp[1], pp[2]);
                if (Infinity.IsInfinite(cProj.Radius))
                {
                    continue;
                }
                cProj.Color = c.Color;
                projected.Add(cProj);
            }

            SaveToBmp(projected);
        }
Ejemplo n.º 5
0
        public static void CatenoidBasedSurface()
        {
            RLD_outputs outputs;

            SurfaceInternal(out outputs);
            double scale = m_params.Scale;

            // Map a point for a given k/m from the hemihypersphere to the complex plane.
            // You can also pass in -1 for k to get a point on the equator of the hemihypersphere.
            double mInc = Math.PI * 2 / m_params.M;
            Func <RLD_outputs, int, int, Vector3D> onPlane = (o, k, m) =>
            {
                double theta = k == -1 ? 0 : outputs.x_i[k];
                theta += Math.PI / 2;
                return
                    (Sterographic.SphereToPlane(
                         SphericalCoords.SphericalToCartesian(
                             new Vector3D(1, theta, m * mInc)
                             )
                         ));
            };

            // Setup texture coords on fundamental triangle.
            // We'll use a fundamental triangle in the southern hemisphere,
            // with stereographically projected coords at (0,0), (1,0), and CCW on the unit circle depending on M.
            Polygon p = new Polygon();

            p.Segments.Add(Segment.Line(new Vector3D(), new Vector3D(1, 0)));
            p.Segments.Add(Segment.Arc(new Vector3D(1, 0), onPlane(outputs, 1, 1), onPlane(outputs, -1, 1)));
            p.Segments.Add(Segment.Line(onPlane(outputs, -1, 1), new Vector3D()));
            int levels = 9;

            TextureHelper.SetLevels(levels);
            Vector3D[] coords         = TextureHelper.TextureCoords(p, Geometry.Spherical, doGeodesicDome: true);
            int[]      elementIndices = TextureHelper.TextureElements(1, levels);

            // Setup a nearTree for the catenoid locations (on the plane).
            NearTree nearTree = new NearTree(Metric.Spherical);

            for (int k = 1; k < outputs.x_i.Length; k++)
            {
                for (int m = 0; m <= 1; m++)
                {
                    Vector3D loc = onPlane(outputs, k, m);
                    nearTree.InsertObject(new NearTreeObject()
                    {
                        ID = k, Location = loc
                    });
                }
            }

            // Given a point on the plane, find the nearest catenoid center and calculate the height of the surface based on that.
            // This also calculates the locking of the point.
            Func <Vector3D, Tuple <double, Vector3D, Vector3D> > heightAndLocking = coord =>
            {
                NearTreeObject closest;
                if (!nearTree.FindNearestNeighbor(out closest, coord, double.MaxValue))
                {
                    throw new System.Exception();
                }

                Vector3D locked = new Vector3D();
                if (p.Segments[0].IsPointOn(coord) ||
                    p.Segments[2].IsPointOn(coord))
                {
                    locked = new Vector3D(1, 1, 0, 0);
                }
                //if( p.Segments[1].IsPointOn( v ) )		// Not working right for some reason, but line below will work.
                if (Tolerance.Equal(coord.Abs(), 1))
                {
                    locked = new Vector3D(1, 1, 1, 0);
                }

                Vector3D vSphere = Sterographic.PlaneToSphere(coord);
                Vector3D cSphere = Sterographic.PlaneToSphere(closest.Location);
                double   dist    = vSphere.AngleTo(cSphere);

                int    k          = (int)closest.ID;
                double waist      = outputs.t_i[k];
                double rld_height = outputs.phi_i[k];

                double h      = waist * 3.5 * 2;                                        // height where catenoid will meet rld_height.
                double factor = scale * rld_height * 2 / h;                             // Artifical scaling so we can see things.
                dist /= factor;

                double z = double.NaN;
                if (dist >= waist)
                {
                    z = waist * DonHatch.acosh(dist / waist);
                }
                else if (dist >= 0.7 * waist)
                {
                    z = 0;

                    // Move the coord to the thinnest waist circle.
                    Mobius m = new Mobius();
                    m.Hyperbolic(Geometry.Spherical, coord.ToComplex(), waist / dist);
                    coord = m.Apply(coord);
                }

                if (dist < waist * 20)
                {
                    locked = new Vector3D(1, 1, 1, 1);
                }

                return(new Tuple <double, Vector3D, Vector3D>(z * factor, locked, coord));
            };

            // Calculate all the coordinates.
            Vector3D[] locks = new Vector3D[coords.Length];
            for (int i = 0; i < coords.Length; i++)
            {
                Vector3D coord = coords[i];
                var      hl    = heightAndLocking(coord);
                locks[i]  = hl.Item2;
                coord     = hl.Item3;
                coords[i] = Normal(Sterographic.PlaneToSphere(coord), (double)hl.Item1);
            }

            // Relax it.
            Relax(coords, elementIndices, locks);

            Mesh   mesh = new Mesh();
            Sphere s    = new Sphere();

            for (int i = 0; i < elementIndices.Length; i += 3)
            {
                Vector3D a = coords[elementIndices[i]];
                Vector3D b = coords[elementIndices[i + 1]];
                Vector3D c = coords[elementIndices[i + 2]];
                if (a.DNE || b.DNE || c.DNE)
                {
                    continue;
                }

                for (int m = 0; m <= 0; m++)
                {
                    mesh.Triangles.Add(new Mesh.Triangle(a, b, c));
                    mesh.Triangles.Add(new Mesh.Triangle(
                                           s.ReflectPoint(a),
                                           s.ReflectPoint(b),
                                           s.ReflectPoint(c)));
                    a.RotateXY(mInc);
                    b.RotateXY(mInc);
                    c.RotateXY(mInc);
                }
            }

            PovRay.WriteMesh(mesh, "RLD.pov");
        }