Ejemplo n.º 1
0
        public static void Run(int epochs = 5)
        {
            // requires Internet connection
            (dynamic train, dynamic test) = tf.keras.datasets.fashion_mnist.load_data();
            // will be able to do (trainImages, trainLabels) = train;
            ndarray trainImages = np.expand_dims(train.Item1 / 255.0f, axis: 3);
            ndarray trainLabels = train.Item2;
            ndarray testImages  = np.expand_dims(test.Item1 / 255.0f, axis: 3);
            ndarray testLabels  = test.Item2;

            bool loaded = 60000 == trainImages.Length;

            Debug.Assert(loaded);

            var model = new Sequential(new Layer[] {
                // will be able to do: new Flatten(kwargs: new { input_shape = (28, 28) }),
                new ResNetBlock(kernelSize: 3, filters: new [] { 1, 2, 3 }),
                new ResNetBlock(kernelSize: 3, filters: new [] { 1, 2, 3 }),
                new Flatten(),
                new Dense(units: 10, activation: tf.nn.softmax_fn),
            });

            model.compile(
                optimizer: new AdamOptimizer(),
                loss: "sparse_categorical_crossentropy",
                metrics: new dynamic[] { "accuracy" });

            model.fit(trainImages, trainLabels, epochs: epochs);

            var    testEvalResult = model.evaluate(testImages, testLabels);
            double testAcc        = testEvalResult[1];

            Console.WriteLine($"Test accuracy: {testAcc}");
            model.summary();
        }
Ejemplo n.º 2
0
        public void sequential_guide_convnet()
        {
            // Generate dummy data
            double[,,,] x_train = (double[, , , ])Accord.Math.Matrix.Zeros <double>(new int[] { 100, 100, 100, 3 }); // TODO: Add a better overload in Accord
            int[] y_train = Accord.Math.Vector.Random(100, min: 0, max: 10);
            double[,,,] x_test = (double[, , , ])Accord.Math.Matrix.Zeros <double>(new int[] { 20, 100, 100, 3 });   // TODO: Add a better overload in Accord
            int[] y_test = Accord.Math.Vector.Random(100, min: 0, max: 10);

            var model = new Sequential();

            // input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
            // this applies 32 convolution filters of size 3x3 each.
            model.Add(new Conv2D(32, new[] { 3, 3 }, activation: "relu", input_shape: new int?[] { 100, 100, 3 }));
            model.Add(new Conv2D(32, new[] { 3, 3 }, activation: "relu"));
            model.Add(new MaxPooling2D(pool_size: new[] { 2, 2 }));
            model.Add(new Dropout(0.25));

            model.Add(new Conv2D(64, new[] { 3, 3 }, activation: "relu"));
            model.Add(new Conv2D(64, new[] { 3, 3 }, activation: "relu"));
            model.Add(new MaxPooling2D(pool_size: new[] { 2, 2 }));
            model.Add(new Dropout(0.25));

            model.Add(new Flatten());
            model.Add(new Dense(256, activation: "relu"));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(10, activation: "softmax"));

            var sgd = new SGD(lr: 0.01, decay: 1e-6, momentum: 0.9, nesterov: true);

            model.Compile(loss: "categorical_crossentropy", optimizer: sgd);

            model.fit(x_train, y_train, batch_size: 32, epochs: 10);
            var score = model.evaluate(x_test, y_test, batch_size: 32);
        }
Ejemplo n.º 3
0
        public void sequential_guide_mlp_binary()
        {
            // Generate dummy data
            double[,] x_train = Accord.Math.Matrix.Random(1000, 20);
            int[] y_train = Accord.Math.Vector.Random(1000, min: 0, max: 10);
            double[,] x_test = Accord.Math.Matrix.Random(1000, 20);
            int[] y_test = Accord.Math.Vector.Random(1000, min: 0, max: 10);

            var model = new Sequential();

            model.Add(new Dense(64, input_dim: 20, activation: "relu"));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(64, activation: "relu"));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(1, activation: "sigmoid"));

            model.Compile(loss: "binary_crossentropy",
                          optimizer: "rmsprop",
                          metrics: new[] { "accuracy" });

            model.fit(x_train, y_train,
                      epochs: 20,
                      batch_size: 128);

            var score = model.evaluate(x_test, y_test, batch_size: 128);
        }
Ejemplo n.º 4
0
        public void sequential_guide_mlp_multiclass()
        {
            // Generate dummy data
            double[,] x_train = Accord.Math.Matrix.Random(1000, 20);
            int[] y_train = Accord.Math.Vector.Random(1000, min: 0, max: 10);
            double[,] x_test = Accord.Math.Matrix.Random(1000, 20);
            int[] y_test = Accord.Math.Vector.Random(1000, min: 0, max: 10);

            var model = new Sequential();

            // Dense(64) is a fully-connected layer with 64 hidden units.
            // in the first layer, you must specify the expected input data shape:
            // here, 20-dimensional vectors.

            model.Add(new Dense(64, activation: "relu", input_dim: 20));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(64, activation: "relu"));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(10, activation: "softmax"));

            var sgd = new SGD(lr: 0.01, decay: 1e-6, momentum: 0.9, nesterov: true);

            model.Compile(loss: "categorical_crossentropy",
                          optimizer: sgd,
                          metrics: new[] { "accuracy" });

            model.fit(x_train, y_train,
                      epochs: 20,
                      batch_size: 128);

            var score = model.evaluate(x_test, y_test, batch_size: 128);
        }
Ejemplo n.º 5
0
        public void DoSomeWork(double[][] myoData)
        {
            using (var session = new TFSession())
            {
                float[,] x = myoData.ToMatrix().ToSingle();
                float[] y = myoData.GetColumn(0).ToSingle();

                var inputDim = x.GetLength(1);


                KerasSharp.Backends.Current.Switch("KerasSharp.Backends.TensorFlowBackend");


                // Create the model
                var model = new Sequential();
                model.Add(new Dense(512, input_dim: inputDim, activation: new ReLU()));
                model.Add(new Dense(8, activation: new Softmax()));



                // Compile the model (for the moment, only the mean square
                // error loss is supported, but this should be solved soon)
                model.Compile(loss: new CategoricalCrossEntropy(),
                              optimizer: new SGD(),
                              metrics: new[] { new Accuracy() });

                // Fit the model for 150 epochs
                model.fit(x, y, epochs: 150, batch_size: 32);

                // Use the model to make predictions
                float[] pred = model.predict(x)[0].To <float[]>();

                // Evaluate the model
                double[] scores = model.evaluate(x, y);
                Console.WriteLine($"{model.metrics_names[1]}: {scores[1] * 100}");
            }


            /*
             * using (var session = new TFSession())
             * {
             *  var graph = session.Graph;
             *
             *  var a = graph.Const(2);
             *  var b = graph.Const(3);
             *
             *  TFTensor addingTensor = session.GetRunner().Run(graph.Add(a, b));
             *  object TResVal = addingTensor.GetValue();
             *
             * }
             */
        }
Ejemplo n.º 6
0
        public Model CanLearn()
        {
            // requires Internet connection
            (dynamic train, dynamic test) = tf.keras.datasets.fashion_mnist.load_data();
            ndarray trainImage = NormalizeChannelValue(train.Item1)[0];

            trainImage = (ndarray)np.expand_dims(trainImage, axis: 2).reshape(new [] { 28 * 28, 1 });
            var coords = Coord(28, 28).ToNumPyArray().reshape(new [] { 28 * 28, 2 });

            var model = new Sequential(new object[] {
                new Siren(2, Enumerable.Repeat(128, 3).ToArray()),
                new Dense(units: 1, activation: tf.keras.activations.relu_fn),
            });

            model.compile(
                optimizer: new Adam(),
                loss: "mse");

            model.fit(coords, targetValues: trainImage, epochs: 2, batchSize: 28 * 28, stepsPerEpoch: 1024);

            double testLoss = model.evaluate(coords, trainImage);

            return(model);
        }
Ejemplo n.º 7
0
    public void TestModelCompileAndFit()
    {
        print("Test base Squential Model");

        float[,] x = { { 2, 3, 4, 5 }, { 4, 3, 2, 1 }, { 8, 44, 22, 11 }, { 1, 3, 3, 1 } };
        float[,] y = { { 0.2f, 0.2f }, { 0.4f, 0.4f }, { 0.8f, 0.8f }, { 0.1f, 0.1f } };
        var model = new Sequential();

        model.Add(new Dense(12, input_dim: 4, activation: new ReLU()));
        model.Add(new Dense(8, activation: new ReLU()));
        model.Add(new Dense(2, activation: new Sigmoid()));

        // Compile the model (for the moment, only the mean square
        // error loss is supported, but this should be solved soon)
        model.Compile(loss: new MeanSquareError(),
                      optimizer: new Adam(0.001));

        print("fit 1");
        model.fit(x, y, batch_size: 4, epochs: 30, verbose: 1);

        print("fit 2");
        model.fit(x, y, batch_size: 4, epochs: 30, verbose: 1);
        // Use the model to make predictions
        //var test = model.predict(x)[0];
        //float[,] pred = model.predict(x)[0].To<float[,]>();



        // Evaluate the model
        double[] scores = model.evaluate(x, y);
        Debug.Log("Eval results: " + string.Join(",", scores));
        //scores = model.evaluate(x, y); scores = model.evaluate(x, y);
        //Debug.Log($"{model.metrics_names[1]}: {scores[1] * 100}");

        ((UnityTFBackend)K).ExportGraphDef("SavedGraph/sequentialtest.pb");
    }
Ejemplo n.º 8
0
        public void sequential_guide_lstm()
        {
            // Generate dummy data
            double[][][] x_train = null; // TODO: Generate 100 random sequences, with random lengths
            int[]        y_train = Accord.Math.Vector.Random(100, min: 0, max: 10);
            double[][][] x_test  = null; // TODO: Generate 50 random sequences, with random lengths
            int[]        y_test  = Accord.Math.Vector.Random(50, min: 0, max: 10);

            int max_features = 1024;

            var model = new Sequential();

            model.Add(new Embedding(max_features, output_dim: 256));
            model.Add(new LSTM(128));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(1, activation: "sigmoid"));

            model.Compile(loss: "binary_crossentropy",
                          optimizer: "rmsprop",
                          metrics: new[] { "accuracy" });

            model.fit(x_train, y_train, batch_size: 16, epochs: 10);
            var score = model.evaluate(x_test, y_test, batch_size: 16);
        }
Ejemplo n.º 9
0
        static void Main(string[] args)
        {
            /*
             # Example from https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
             #
             # from keras.models import Sequential
             # from keras.layers import Dense
             # import numpy
             #
             # fix random seed for reproducibility
             # numpy.random.seed(7)
             #
             # load pima indians dataset
             # dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
             # split into input (X) and output (Y) variables
             # X = dataset[:,0:8]
             # Y = dataset[:,8]
             #
             # create model
             # model = Sequential()
             # model.add(Dense(12, input_dim=8, activation='relu'))
             # model.add(Dense(8, activation='relu'))
             # model.add(Dense(1, activation='sigmoid'))
             #
             # Compile model
             # model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
             #
             # Fit the model
             # model.fit(X, Y, epochs=150, batch_size=10)
             #
             # evaluate the model
             # scores = model.evaluate(X, Y)
             # print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
             */

            //KerasSharp.Backends.Current.Switch("KerasSharp.Backends.TensorFlowBackend");
            KerasSharp.Backends.Current.Switch("KerasSharp.Backends.CNTKBackend");

            // Load the Pima Indians Data Set
            var pima = new Accord.DataSets.PimaIndiansDiabetes();

            float[,] x = pima.Instances.ToMatrix().ToSingle();
            float[] y = pima.ClassLabels.ToSingle();

            // Create the model
            var model = new Sequential();

            model.Add(new Dense(12, input_dim: 8, activation: new ReLU()));
            model.Add(new Dense(8, activation: new ReLU()));
            model.Add(new Dense(1, activation: new Sigmoid()));

            // Compile the model (for the moment, only the mean square
            // error loss is supported, but this should be solved soon)
            model.Compile(loss: new MeanSquareError(),
                          optimizer: new Adam(),
                          metrics: new[] { new Accuracy() });

            // Fit the model for 150 epochs
            model.fit(x, y, epochs: 150, batch_size: 10);

            // Use the model to make predictions
            float[] pred = model.predict(x)[0].To <float[]>();

            // Evaluate the model
            double[] scores = model.evaluate(x, y);
            Console.WriteLine($"{model.metrics_names[1]}: {scores[1] * 100}");

            Console.ReadLine();
        }