Ejemplo n.º 1
0
        public static void Run(int epochs = 5)
        {
            // requires Internet connection
            (dynamic train, dynamic test) = tf.keras.datasets.fashion_mnist.load_data();
            // will be able to do (trainImages, trainLabels) = train;
            ndarray trainImages = np.expand_dims(train.Item1 / 255.0f, axis: 3);
            ndarray trainLabels = train.Item2;
            ndarray testImages  = np.expand_dims(test.Item1 / 255.0f, axis: 3);
            ndarray testLabels  = test.Item2;

            bool loaded = 60000 == trainImages.Length;

            Debug.Assert(loaded);

            var model = new Sequential(new Layer[] {
                // will be able to do: new Flatten(kwargs: new { input_shape = (28, 28) }),
                new ResNetBlock(kernelSize: 3, filters: new [] { 1, 2, 3 }),
                new ResNetBlock(kernelSize: 3, filters: new [] { 1, 2, 3 }),
                new Flatten(),
                new Dense(units: 10, activation: tf.nn.softmax_fn),
            });

            model.compile(
                optimizer: new AdamOptimizer(),
                loss: "sparse_categorical_crossentropy",
                metrics: new dynamic[] { "accuracy" });

            model.fit(trainImages, trainLabels, epochs: epochs);

            var    testEvalResult = model.evaluate(testImages, testLabels);
            double testAcc        = testEvalResult[1];

            Console.WriteLine($"Test accuracy: {testAcc}");
            model.summary();
        }
Ejemplo n.º 2
0
        public void Embedding()
        {
            var model = new Sequential();

            model.add(new Embedding(1000, 64, input_length: 10));
            // the model will take as input an integer matrix of size (batch,
            // input_length).
            // the largest integer (i.e. word index) in the input should be no larger
            // than 999 (vocabulary size).
            // now model.output_shape == (None, 10, 64), where None is the batch
            // dimension.
            var input_array = np.random.randint(1000, size: (32, 10));

            model.compile("rmsprop", "mse");
        }
Ejemplo n.º 3
0
        public void Test1()
        {
            var epochs          = 200;
            var batchSize       = 128;
            var classes         = 10;
            var hiddenCount     = 128;
            var validationSplit = 0.2;
            var flatImageSize   = 28 * 28;

            var mnist = MnistDataset.Read(@"C:\Projects\heightmap_upscale\data\mnist");

            var x_train = PrepareImage(mnist.TrainingImages);
            var x_test  = PrepareImage(mnist.TestImages);

            var y_train = PrepareLabels(mnist.TrainingLabels);

            var model = new Sequential();

            model.add(new Dense(classes, activation: new softmax()));
            //model.Compile("SGD", loss: "categorical_crossentropy", metrics: new[] { "accuracy" });

            model.compile("SGD", "categorical_crossentropy");
        }
Ejemplo n.º 4
0
        public Model CanLearn()
        {
            // requires Internet connection
            (dynamic train, dynamic test) = tf.keras.datasets.fashion_mnist.load_data();
            ndarray trainImage = NormalizeChannelValue(train.Item1)[0];

            trainImage = (ndarray)np.expand_dims(trainImage, axis: 2).reshape(new [] { 28 * 28, 1 });
            var coords = Coord(28, 28).ToNumPyArray().reshape(new [] { 28 * 28, 2 });

            var model = new Sequential(new object[] {
                new Siren(2, Enumerable.Repeat(128, 3).ToArray()),
                new Dense(units: 1, activation: tf.keras.activations.relu_fn),
            });

            model.compile(
                optimizer: new Adam(),
                loss: "mse");

            model.fit(coords, targetValues: trainImage, epochs: 2, batchSize: 28 * 28, stepsPerEpoch: 1024);

            double testLoss = model.evaluate(coords, trainImage);

            return(model);
        }
Ejemplo n.º 5
0
        static void Main(string[] args)
        {
            GradientEngine.UseEnvironmentFromVariable();
            TensorFlowSetup.Instance.EnsureInitialized();

            // this allows SIREN to oversaturate channels without adding to the loss
            var clampToValidChannelRange = PythonFunctionContainer.Of <Tensor, Tensor>(ClampToValidChannelValueRange);
            var siren = new Sequential(new object[] {
                new GaussianNoise(stddev: 1f / (128 * 1024)),
                new Siren(2, Enumerable.Repeat(256, 5).ToArray()),
                new Dense(units: 4, activation: clampToValidChannelRange),
                new GaussianNoise(stddev: 1f / 128),
            });

            siren.compile(
                // too slow to converge
                //optimizer: new SGD(momentum: 0.5),
                // lowered learning rate to avoid destabilization
                optimizer: new Adam(learning_rate: 0.00032),
                loss: "mse");

            if (args.Length == 0)
            {
                siren.load_weights("sample.weights");
                Render(siren, 1034 * 3, 1536 * 3, "sample6X.png");
                return;
            }

            foreach (string imagePath in args)
            {
                using var original = new Bitmap(imagePath);
                byte[,,] image     = ToBytesHWC(original);
                int height   = image.GetLength(0);
                int width    = image.GetLength(1);
                int channels = image.GetLength(2);
                Debug.Assert(channels == 4);

                var imageSamples = PrepareImage(image);

                var coords = ImageTools.Coord(height, width).ToNumPyArray()
                             .reshape(new[] { width *height, 2 });

                var upscaleCoords = ImageTools.Coord(height * 2, width * 2).ToNumPyArray();

                var improved = ImprovedCallback.Create((sender, eventArgs) => {
                    if (eventArgs.Epoch < 10)
                    {
                        return;
                    }
                    ndarray <float> upscaled = siren.predict(
                        upscaleCoords.reshape(new[] { height *width * 4, 2 }),
                        batch_size: 1024);
                    upscaled         = (ndarray <float>)upscaled.reshape(new[] { height * 2, width * 2, channels });
                    using var bitmap = ToImage(RestoreImage(upscaled));
                    bitmap.Save("sample4X.png", ImageFormat.Png);

                    siren.save_weights("sample.weights");

                    Console.WriteLine();
                    Console.WriteLine("saved!");
                });

                siren.fit(coords, imageSamples, epochs: 100, batchSize: 16 * 1024,
                          shuffleMode: TrainingShuffleMode.Epoch,
                          callbacks: new ICallback[] { improved });
            }
        }
Ejemplo n.º 6
0
        public Task TrainAsync(MLPointCollection points)
        {
            return(Task.Factory.StartNew(() =>
            {
                _modelDispatcher.Invoke(() =>
                {
                    Log.Info("Training");
                    var xydata = _dataGenerator.GetPointsXYData(points);

                    var x = np.array(xydata.x.ToArray());
                    var y = np.array(xydata.y.ToArray());
                    var count = (int)(xydata.x.Count / (decimal)xydata.dataItemsPerX);
                    x = x.reshape(count, xydata.dataItemsPerX);
                    y = y.reshape(count, 3);

                    //Tensorflow.InvalidArgumentError: 'In[0] mismatch In[1] shape: 28 vs. 1120: [5,28] [1120,60] 0 0'

                    /*_model = keras.Sequential(
                     *  new List<ILayer>
                     *  {
                     *      new Flatten(new FlattenArgs
                     *      {
                     *          InputShape = new TensorShape(xydata.dataItemsPerX)
                     *      }),
                     *      //keras.layers.Flatten(),
                     *      keras.layers.Dense(xydata.dataItemsPerX, activation: "relu"),//, input_shape: new TensorShape(-1, xydata.dataItemsPerX)),
                     *      keras.layers.Dense(60, activation: "relu"),
                     *      keras.layers.Dense(40, activation: "relu"),
                     *      keras.layers.Dense(3, activation: "softmax"),
                     *  });
                     *
                     *                   _model.compile(keras.optimizers.SGD(0.01F), keras.losses.CategoricalCrossentropy(from_logits: true),
                     */

                    var numberOfClasses = 3;
                    _model = keras.Sequential(
                        new List <ILayer>
                    {
                        new Flatten(new FlattenArgs
                        {
                            InputShape = new TensorShape(xydata.dataItemsPerX)
                        }),
                        //keras.layers.Flatten(),
                        keras.layers.Dense(xydata.dataItemsPerX, activation: "relu"),    //, input_shape: new TensorShape(-1, xydata.dataItemsPerX)),
                        keras.layers.Dropout(0.2F),
                        keras.layers.Dense(12, activation: "relu"),
                        keras.layers.Dropout(0.2F),
                        keras.layers.Dense(6, activation: "relu"),
                        keras.layers.Dense(numberOfClasses, activation: "softmax"),
                    });

                    //var loss = new SGD(0.05F);
                    //var optimiser = new SparseCategoricalCrossentropy();
                    //model.compile(loss, optimiser, new[] { "accuracy" });
                    //model.compile(new SGD(0.1F), new SparseCategoricalCrossentropy(), new[] { "accuracy" });

                    // logits and labels must have the same first dimension, got logits shape [5,3] and labels shape [15]'
                    _model.compile(
                        keras.optimizers.Adam(0.01F),
                        keras.losses.CategoricalCrossentropy(),
                        new[] { "acc" });

                    //here // SparseCategoricalCrossentropy?  Validation set? More generated data?

                    _model.fit(x, y, 5, 100, 1, validation_split: 0.1F);
                    Log.Info("Training complete");
                });
            }));//, TaskCreationOptions.LongRunning);
        }