Ejemplo n.º 1
0
        public static ((NDArray, NDArray), (NDArray, NDArray)) LoadData(string path = "boston_housing.npz", float test_split = 0.2f, int seed = 113)
        {
            Debug.Assert(0 <= test_split && test_split < 1);
            path = DataUtils.GetFile(path, origin: "https://s3.amazonaws.com/keras-datasets/boston_housing.npz", file_hash: "f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5");

            var arrays = NDArray.LoadNpz(path);
            var x      = arrays[0];
            var y      = arrays[1];

            mx.Seed(seed);
            NDArray indices = np.arange(x.Shape[0]);

            indices = nd.Shuffle(indices.AsType(DType.Int32));
            x       = x[indices];
            y       = y[indices];
            int n      = x.Shape[0];
            int test_n = Convert.ToInt32(test_split * n);

            var x_train = x[$":{test_n}"];
            var y_train = y[$":{test_n}"];
            var x_test  = x[$"{test_n}:"];
            var y_test  = y[$"{test_n}:"];

            return((x_train, y_train), (x_test, y_test));
        }
Ejemplo n.º 2
0
        public override void Update(NDArray labels, NDArray preds)
        {
            CheckLabelShapes(labels, preds);
            var pred_label  = preds.Argsort().AsType(DType.Int32); //ToDo: Use numpy argpartition
            var label       = labels.AsType(DType.Int32);
            var num_samples = pred_label.Shape[0];
            var num_dims    = pred_label.Shape.Dimension;

            if (num_dims == 1)
            {
                sum_metric += nd.Equal(pred_label.Ravel(), label.Ravel()).Sum();
            }

            else if (num_dims == 2)
            {
                var num_classes = pred_label.Shape[1];
                TopK = Math.Min(num_classes, TopK);
                for (var j = 0; j < TopK; j++)
                {
                    float num_correct = nd.Equal(pred_label[$":,{num_classes - 1 - j}"].Ravel(), label.Ravel()).Sum();
                    sum_metric        += num_correct;
                    global_sum_metric += num_correct;
                }
            }

            num_inst        += num_samples;
            global_num_inst += num_samples;
        }
Ejemplo n.º 3
0
        public override NDArrayDict CreateState(int index, NDArray weight)
        {
            var state = new NDArrayDict();

            state["weight_master_copy"] = null;
            state["momentum"]           = null;
            if (MultiPrecision && weight.DataType.Name == DType.Float16.Name)
            {
                state["weight_master_copy"] = weight.AsType(DType.Float32);
                if (Momentum != 0)
                {
                    state["momentum"] = nd.Zeros(weight.Shape, weight.Context, weight.DataType).ToSType(weight.SType);
                }

                return(state);
            }

            if (!MultiPrecision && weight.DataType.Name == DType.Float16.Name)
            {
                Logger.Warning("Accumulating with float16 in optimizer can lead to " +
                               "poor accuracy or slow convergence. " +
                               "Consider using multi_precision=True option of the " +
                               "SGD optimizer");
            }

            if (Momentum != 0)
            {
                state["momentum"] = nd.Zeros(weight.Shape, weight.Context, weight.DataType).ToSType(weight.SType);
            }

            return(state);
        }
        public void UpdateBinaryStats(NDArray label, NDArray pred)
        {
            label = label.AsType(DType.Int32);
            var pred_label = nd.Argmax(pred, 1);

            CheckLabelShapes(label, pred);
            //ToDo: check unique values and throw error for binary classification

            var pred_true   = nd.EqualScalar(pred_label, 1);
            var pred_false  = 1 - pred_true;
            var label_true  = nd.EqualScalar(label, 1);
            var label_false = 1 - label_true;

            var true_pos  = (pred_true * label_true).Sum();
            var false_pos = (pred_true * label_false).Sum();
            var false_neg = (pred_false * label_true).Sum();
            var true_neg  = (pred_false * label_false).Sum();

            true_positives         += (int)true_pos;
            global_true_positives  += (int)true_pos;
            false_positives        += (int)false_pos;
            global_false_positives += (int)false_pos;
            false_negatives        += (int)false_neg;
            global_false_negatives += (int)false_neg;
            true_negatives         += (int)true_neg;
            global_true_negatives  += (int)true_neg;
        }
Ejemplo n.º 5
0
        public override void Update(NDArray labels, NDArray preds)
        {
            var label = labels.AsType(DType.Int32).AsNumpy();
            var pred  = np.argmax(preds.AsNumpy(), 1).astype(NPTypeCode.Int32);
            var n     = np.max(pred.max(), label.max()).Data <int>()[0];

            if (n >= k)
            {
                Grow(n + 1 - k);
            }

            var bcm = np.zeros(k, k);

            pred.Data <int>().Zip(label.Data <int>(), (i, j) =>
            {
                bcm[i, j] += 1;
                return(true);
            });

            lcm += bcm;
            gcm += bcm;

            num_inst        += 1;
            global_num_inst += 1;
        }
Ejemplo n.º 6
0
        public void TestAsType()
        {
            NDArray nd = new NDArray(1, 2, 3);

            int[] i = nd.AsType <int>();

            int[] t = new int[] { 1, 2, 3 };

            Assert.True(Enumerable.SequenceEqual(i, t), "Arrays are not equal.");
        }
Ejemplo n.º 7
0
        public virtual (NDArrayDict, NDArray) CreateStateMultiPrecision(int index, NDArray weight)
        {
            NDArray weight_master_copy = null;

            if (MultiPrecision && weight.DataType.Name == DType.Float16.Name)
            {
                weight_master_copy = weight.AsType(DType.Float32);
                return(CreateState(index, weight_master_copy), weight_master_copy);
            }

            if (!MultiPrecision && weight.DataType.Name == DType.Float16.Name)
            {
                Logger.Warning("Accumulating with float16 in optimizer can lead to " +
                               "poor accuracy or slow convergence. " +
                               "Consider using multi_precision=True option of the " +
                               "optimizer");
            }

            return(CreateState(index, weight), weight);
        }
Ejemplo n.º 8
0
        public override void Update(NDArray labels, NDArray preds)
        {
            float loss = 0;
            var   num  = 0;

            labels = labels.AsInContext(preds.Context).Reshape(preds.Size);
            preds  = nd.Pick(preds, labels.AsType(DType.Int32), Axis);
            if (IgnoreLabel.HasValue)
            {
                var ignore = nd.EqualScalar(labels, IgnoreLabel.Value).AsType(preds.DataType);
                num  -= nd.Sum(ignore).AsScalar <int>();
                preds = preds * (1 - ignore) + ignore;
            }

            loss -= nd.Sum(nd.Log(nd.MaximumScalar(preds, 1e-10f))).AsScalar <float>();
            num  += preds.Size;

            sum_metric        += loss;
            global_sum_metric += loss;
            num_inst          += num;
            global_num_inst   += num;
        }
Ejemplo n.º 9
0
        public static void ImShow(NDArray x, string winname = "", bool wait = true)
        {
            if (winname == "")
            {
                winname = "test";
            }

            bool transpose = true;

            if (x.Shape.Dimension == 4)
            {
                x = x.Reshape(x.Shape[1], x.Shape[2], x.Shape[3]).AsType(DType.UInt8);
            }
            else
            {
                x = x.AsType(DType.UInt8);
            }

            if (x.Shape[0] > 3)
            {
                transpose = false;
            }

            if (transpose)
            {
                x = x.Transpose(new Shape(1, 2, 0));
            }
            NDArray.WaitAll();
            Mat mat = x;

            Cv2.ImShow(winname, mat);
            NDArray.WaitAll();
            if (wait)
            {
                Cv2.WaitKey();
            }
        }
Ejemplo n.º 10
0
 public override NDArray Call(NDArray src)
 {
     return(src.AsType(DataType));
 }
Ejemplo n.º 11
0
        public static ((NDArray, NDArray), (NDArray, NDArray)) LoadData(string path = "imdb.npz", int?num_words = null, int skip_top = 0, int?maxlen = null, int seed = 113, int start_char = 1, int oov_char = 2, int index_from = 3)
        {
            path = DataUtils.GetFile(path, origin: "https://s3.amazonaws.com/text-datasets/imdb.npz", file_hash: "599dadb1135973df5b59232a0e9a887c");
            var arrays       = NDArray.LoadNpz(path);
            var x_train      = arrays[0];
            var labels_train = arrays[1];
            var x_test       = arrays[2];
            var labels_test  = arrays[4];

            mx.Seed(seed);
            NDArray indices = nd.Arange(0, x_train.Shape[0]);

            indices = nd.Shuffle(indices.AsType(DType.Int32));

            x_train      = x_train[indices];
            labels_train = labels_train[indices];

            indices     = nd.Arange(0, x_test.Shape[0]);
            indices     = nd.Shuffle(indices.AsType(DType.Int32));
            x_test      = x_test[indices];
            labels_test = labels_test[indices];
            ndarray xs = nd.Concat(new List <NDArray> {
                x_train,
                x_test
            });

            ndarray labels = nd.Concat(new List <NDArray> {
                labels_train,
                labels_test
            });

            //if (start_char != 0)
            //{
            //    xs = (from x in xs
            //          select (new List<int> {
            //            start_char
            //        } + (from w in x
            //             select (w + index_from)).ToList())).ToList();
            //}
            //else if (index_from)
            //{
            //    xs = (from x in xs
            //          select (from w in x
            //                  select (w + index_from)).ToList()).ToList();
            //}
            //if (maxlen)
            //{
            //    var _tup_1 = _remove_long_seq(maxlen, xs, labels);
            //    xs = _tup_1.Item1;
            //    labels = _tup_1.Item2;
            //    if (!xs)
            //    {
            //        throw new ValueError("After filtering for sequences shorter than maxlen=" + maxlen.ToString() + ", no sequence was kept. Increase maxlen.");
            //    }
            //}
            //if (!num_words)
            //{
            //    num_words = max((from x in xs
            //                     select max(x)).ToList());
            //}
            //// by convention, use 2 as OOV word
            //// reserve 'index_from' (=3 by default) characters:
            //// 0 (padding), 1 (start), 2 (OOV)
            //if (oov_char != null)
            //{
            //    xs = (from x in xs
            //          select (from w in x
            //                  select skip_top <= w < num_words ? w : oov_char).ToList()).ToList();
            //}
            //else
            //{
            //    xs = (from x in xs
            //          select (from w in x
            //                  where skip_top <= w < num_words
            //                  select w).ToList()).ToList();
            //}
            //var idx = x_train.Count;
            //x_train = np.array(xs[::idx]);
            //var y_train = np.array(labels[::idx]);
            //x_test = np.array(xs[idx]);
            //var y_test = np.array(labels[idx]);
            //return Tuple.Create((x_train, y_train), (x_test, y_test));

            throw new NotImplementedException();
        }
Ejemplo n.º 12
0
 public static float Acc(NDArray output, NDArray label)
 {
     // output: (batch, num_output) float32 ndarray
     // label: (batch, ) int32 ndarray
     return(nd.Equal(output.Argmax(axis: 1), label.AsType(DType.Float32)).Mean());
 }
Ejemplo n.º 13
0
 public static NDArray CastToFloatX(NDArray x)
 {
     return(x.AsType(_FLOATX));
 }