Skip to content

.NET Standard bindings for Apache MxNet with Imperative, Symbolic and Gluon Interface for developing, training and deploying Machine Learning models in C#.

License

Notifications You must be signed in to change notification settings

AvenSun/MxNet.Sharp

 
 

Repository files navigation


Apache MXNet (incubating) for Deep Learning

Apache MXNet (incubating) is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.

MXNet is more than a deep learning project. It is a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers.

MxNet.Sharp

MxNet.Sharp is a CSharp binding coving all the Imperative, Symbolic and Gluon API's with an easy to use interface. The Gluon library in Apache MXNet provides a clear, concise, and simple API for deep learning. It makes it easy to prototype, build, and train deep learning models without sacrificing training speed.

Nuget

Install the package: Install-Package MxNet.Sharp

https://www.nuget.org/packages/MxNet.Sharp

Add the MxNet redistributed package available as per below.

Important: Make sure your installed CUDA version matches the CUDA version in the nuget package.

Check your CUDA version with the following command:

nvcc --version

You can either upgrade your CUDA install or install the MXNet package that supports your CUDA version.

MxNet Version Build: https://github.com/apache/incubator-mxnet/releases/tag/1.5.0

Win-x64 Packages

Type Name Nuget
MxNet-CPU MxNet CPU Version Install-Package MxNet.Runtime.Redist
MxNet-MKL MxNet CPU with MKL Install-Package MxNet-MKL.Runtime.Redist
MxNet-CU101 MxNet for Cuda 10.1 and CuDnn 7 Install-Package MxNet-CU101.Runtime.Redist
MxNet-CU101MKL MxNet for Cuda 10.1 and CuDnn 7 Install-Package MxNet-CU101MKL.Runtime.Redist
MxNet-CU100 MxNet for Cuda 10 and CuDnn 7 Install-Package MxNet-CU100.Runtime.Redist
MxNet-CU100MKL MxNet with MKL for Cuda 10 and CuDnn 7 Install-Package MxNet-CU100MKL.Runtime.Redist
MxNet-CU92 MxNet for Cuda 9.2 and CuDnn 7 Install-Package MxNet-CU100.Runtime.Redist
MxNet-CU92MKL MxNet with MKL for Cuda 9.2 and CuDnn 7 Install-Package MxNet-CU92MKL.Runtime.Redist
MxNet-CU80 MxNet for Cuda 8.0 and CuDnn 7 Install-Package MxNet-CU100.Runtime.Redist
MxNet-CU80MKL MxNet with MKL for Cuda 8.0 and CuDnn 7 Install-Package MxNet-CU80MKL.Runtime.Redist

Linux-x64 Packages

Type Name Nuget
MxNet-CPU MxNet CPU Version Install-Package MxNet.Linux.Runtime.Redist
MxNet-MKL MxNet CPU with MKL Install-Package MxNet-MKL.Linux.Runtime.Redist
MxNet-CU101 MxNet for Cuda 10.1 and CuDnn 7 Yet to publish
MxNet-CU101MKL MxNet for Cuda 10.1 and CuDnn 7 Yet to publish
MxNet-CU100 MxNet for Cuda 10 and CuDnn 7 Yet to publish
MxNet-CU100MKL MxNet with MKL for Cuda 10 and CuDnn 7 Yet to publish
MxNet-CU92 MxNet for Cuda 9.2 and CuDnn 7 Yet to publish
MxNet-CU92MKL MxNet with MKL for Cuda 9.2 and CuDnn 7 Yet to publish
MxNet-CU80 MxNet for Cuda 8.0 and CuDnn 7 Yet to publish
MxNet-CU80MKL MxNet with MKL for Cuda 8.0 and CuDnn 7 Yet to publish

OSX-x64 Packages

Type Name Nuget
MxNet-CPU MxNet CPU Version Yet to publish
MxNet-MKL MxNet CPU with MKL Yet to publish
MxNet-CU101 MxNet for Cuda 10.1 and CuDnn 7 Yet to publish
MxNet-CU101MKL MxNet for Cuda 10.1 and CuDnn 7 Yet to publish
MxNet-CU100 MxNet for Cuda 10 and CuDnn 7 Yet to publish
MxNet-CU100MKL MxNet with MKL for Cuda 10 and CuDnn 7 Yet to publish
MxNet-CU92 MxNet for Cuda 9.2 and CuDnn 7 Yet to publish
MxNet-CU92MKL MxNet with MKL for Cuda 9.2 and CuDnn 7 Yet to publish
MxNet-CU80 MxNet for Cuda 8.0 and CuDnn 7 Yet to publish
MxNet-CU80MKL MxNet with MKL for Cuda 8.0 and CuDnn 7 Yet to publish

Gluon MNIST Example

Demo as per: https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/mnist.html

var mnist = TestUtils.GetMNIST(); //Get the MNIST dataset, it will download if not found
var batch_size = 200; //Set training batch size
var train_data = new NDArrayIter(mnist["train_data"], mnist["train_label"], batch_size, true);
var val_data = new NDArrayIter(mnist["test_data"], mnist["test_label"], batch_size);

// Define simple network with dense layers
var net = new Sequential();
net.Add(new Dense(128, ActivationType.Relu));
net.Add(new Dense(64, ActivationType.Relu));
net.Add(new Dense(10));

//Set context, multi-gpu supported
var gpus = TestUtils.ListGpus();
var ctx = gpus.Count > 0 ? gpus.Select(x => Context.Gpu(x)).ToArray() : new[] {Context.Cpu(0)};

//Initialize the weights
net.Initialize(new Xavier(magnitude: 2.24f), ctx);

//Create the trainer with all the network parameters and set the optimizer
var trainer = new Trainer(net.CollectParams(), new SGD(learning_rate: 0.02f));

var epoch = 10;
var metric = new Accuracy(); //Use Accuracy as the evaluation metric.
var softmax_cross_entropy_loss = new SoftmaxCELoss();
float lossVal = 0; //For loss calculation
for (var iter = 0; iter < epoch; iter++)
{
    var tic = DateTime.Now;
    // Reset the train data iterator.
    train_data.Reset();
    lossVal = 0;

    // Loop over the train data iterator.
    while (!train_data.End())
    {
        var batch = train_data.Next();

        // Splits train data into multiple slices along batch_axis
        // and copy each slice into a context.
        var data = Utils.SplitAndLoad(batch.Data[0], ctx, batch_axis: 0);

        // Splits train labels into multiple slices along batch_axis
        // and copy each slice into a context.
        var label = Utils.SplitAndLoad(batch.Label[0], ctx, batch_axis: 0);

        var outputs = new NDArrayList();

        // Inside training scope
        using (var ag = Autograd.Record())
        {
            outputs = Enumerable.Zip(data, label, (x, y) =>
            {
                var z = net.Call(x);

                // Computes softmax cross entropy loss.
                NDArray loss = softmax_cross_entropy_loss.Call(z, y);

                // Backpropagate the error for one iteration.
                loss.Backward();
                lossVal += loss.Mean();
                return z;
            }).ToList();
        }

        // Updates internal evaluation
        metric.Update(label, outputs.ToArray());

        // Make one step of parameter update. Trainer needs to know the
        // batch size of data to normalize the gradient by 1/batch_size.
        trainer.Step(batch.Data[0].Shape[0]);
    }

    var toc = DateTime.Now;

    // Gets the evaluation result.
    var (name, acc) = metric.Get();

    // Reset evaluation result to initial state.
    metric.Reset();
    Console.Write($"Loss: {lossVal} ");
    Console.WriteLine($"Training acc at epoch {iter}: {name}={(acc * 100).ToString("0.##")}%, Duration: {(toc - tic).TotalSeconds.ToString("0.#")}s");
}

About

.NET Standard bindings for Apache MxNet with Imperative, Symbolic and Gluon Interface for developing, training and deploying Machine Learning models in C#.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C# 100.0%