Ejemplo n.º 1
0
        /**
         * Generates the particle based physical representation of the bone hierarcht. This is the initialization method for the actor
         * and should not be called directly once the object has been created.
         */
        protected override IEnumerator Initialize()
        {
            initialized  = false;
            initializing = true;

            RemoveFromSolver(null);

            // get a list of bones in preorder:
            bones = new List <Transform>();
            foreach (Transform bone in EnumerateBonesBreadthFirst())
            {
                bones.Add(bone);
            }

            parentIndices = new int[bones.Count];

            active           = new bool[bones.Count];
            positions        = new Vector3[bones.Count];
            velocities       = new Vector3[bones.Count];
            invMasses        = new float[bones.Count];
            principalRadii   = new Vector3[bones.Count];
            phases           = new int[bones.Count];
            restPositions    = new Vector4[bones.Count];
            restOrientations = new Quaternion[bones.Count];
            frozen           = new bool[bones.Count];

            DistanceConstraints.Clear();
            ObiDistanceConstraintBatch distanceBatch = new ObiDistanceConstraintBatch(false, false, MIN_YOUNG_MODULUS, MAX_YOUNG_MODULUS);

            DistanceConstraints.AddBatch(distanceBatch);

            BendingConstraints.Clear();
            ObiBendConstraintBatch bendingBatch = new ObiBendConstraintBatch(false, false, MIN_YOUNG_MODULUS, MAX_YOUNG_MODULUS);

            BendingConstraints.AddBatch(bendingBatch);

            SkinConstraints.Clear();
            ObiSkinConstraintBatch skinBatch = new ObiSkinConstraintBatch(true, false, MIN_YOUNG_MODULUS, MAX_YOUNG_MODULUS);

            SkinConstraints.AddBatch(skinBatch);

            for (int i = 0; i < bones.Count; ++i)
            {
                active[i]           = true;
                invMasses[i]        = 1.0f / DEFAULT_PARTICLE_MASS;
                positions[i]        = transform.InverseTransformPoint(bones[i].position);
                restPositions[i]    = positions[i];
                restPositions[i][3] = 1;
                restOrientations[i] = Quaternion.identity;
                principalRadii[i]   = new Vector3(particleRadius, particleRadius, particleRadius);
                frozen[i]           = false;
                phases[i]           = Oni.MakePhase(1, selfCollisions?Oni.ParticlePhase.SelfCollide:0);

                parentIndices[i] = -1;
                if (bones[i].parent != null)
                {
                    parentIndices[i] = bones.IndexOf(bones[i].parent);
                }

                skinBatch.AddConstraint(i, positions[i], Vector3.up, 0.05f, 0, 0, 1);

                foreach (Transform child in bones[i])
                {
                    int childIndex = bones.IndexOf(child);
                    if (childIndex >= 0)
                    {
                        // add distance constraint between the bone and its child.
                        distanceBatch.AddConstraint(i, childIndex, Vector3.Distance(bones[i].position, child.position), 1, 1);

                        if (parentIndices[i] >= 0)
                        {
                            Transform parent = bones[parentIndices[i]];

                            float[] bendRestPositions = new float[] { parent.position[0], parent.position[1], parent.position[2],
                                                                      child.position[0], child.position[1], child.position[2],
                                                                      bones[i].position[0], bones[i].position[1], bones[i].position[2] };
                            float restBend = Oni.BendingConstraintRest(bendRestPositions);

                            // add bend constraint between the bone, its parent and its child.
                            bendingBatch.AddConstraint(parentIndices[i], childIndex, i, restBend, 0, 0);
                        }
                    }
                }

                if (i % 10 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiBone: generating particles...", i / (float)bones.Count));
                }
            }

            skinBatch.Cook();

            initializing = false;
            initialized  = true;
        }
Ejemplo n.º 2
0
        /**
         * Generates the particle based physical representation of the rope. This is the initialization method for the rope object
         * and should not be called directly once the object has been created.
         */
        protected override IEnumerator Initialize()
        {
            initialized           = false;
            initializing          = true;
            interParticleDistance = -1;

            RemoveFromSolver(null);

            if (ropePath == null)
            {
                Debug.LogError("Cannot initialize rope. There's no ropePath present. Please provide a spline to define the shape of the rope");
                yield break;
            }

            ropePath.RecalculateSplineLenght(0.00001f, 7);
            closed     = ropePath.closed;
            restLength = ropePath.Length;

            usedParticles  = Mathf.CeilToInt(restLength / thickness * resolution) + (closed ? 0:1);
            totalParticles = usedParticles + pooledParticles;             //allocate extra particles to allow for lenght change and tearing.

            active         = new bool[totalParticles];
            positions      = new Vector3[totalParticles];
            velocities     = new Vector3[totalParticles];
            invMasses      = new float[totalParticles];
            principalRadii = new Vector3[totalParticles];
            phases         = new int[totalParticles];
            restPositions  = new Vector4[totalParticles];
            tearResistance = new float[totalParticles];
            colors         = new Color[totalParticles];

            int numSegments = usedParticles - (closed ? 0:1);

            if (numSegments > 0)
            {
                interParticleDistance = restLength / (float)numSegments;
            }
            else
            {
                interParticleDistance = 0;
            }

            float radius = interParticleDistance * resolution;

            for (int i = 0; i < usedParticles; i++)
            {
                active[i]    = true;
                invMasses[i] = 1.0f / DEFAULT_PARTICLE_MASS;
                float mu = ropePath.GetMuAtLenght(interParticleDistance * i);
                positions[i]      = transform.InverseTransformPoint(ropePath.transform.TransformPoint(ropePath.GetPositionAt(mu)));
                principalRadii[i] = Vector3.one * radius;
                phases[i]         = Oni.MakePhase(1, selfCollisions?Oni.ParticlePhase.SelfCollide:0);
                tearResistance[i] = 1;
                colors[i]         = Color.white;

                if (i % 100 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiRope: generating particles...", i / (float)usedParticles));
                }
            }

            // Initialize basic data for pooled particles:
            for (int i = usedParticles; i < totalParticles; i++)
            {
                active[i]         = false;
                invMasses[i]      = 1.0f / DEFAULT_PARTICLE_MASS;
                principalRadii[i] = Vector3.one * radius;
                phases[i]         = Oni.MakePhase(1, selfCollisions?Oni.ParticlePhase.SelfCollide:0);
                tearResistance[i] = 1;
                colors[i]         = Color.white;

                if (i % 100 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiRope: generating particles...", i / (float)usedParticles));
                }
            }

            DistanceConstraints.Clear();
            ObiDistanceConstraintBatch distanceBatch = new ObiDistanceConstraintBatch(false, false, MIN_YOUNG_MODULUS, MAX_YOUNG_MODULUS);

            DistanceConstraints.AddBatch(distanceBatch);

            for (int i = 0; i < numSegments; i++)
            {
                distanceBatch.AddConstraint(i, (i + 1) % (ropePath.closed ? usedParticles:usedParticles + 1), interParticleDistance, 1, 1);

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiRope: generating structural constraints...", i / (float)numSegments));
                }
            }

            BendingConstraints.Clear();
            ObiBendConstraintBatch bendingBatch = new ObiBendConstraintBatch(false, false, MIN_YOUNG_MODULUS, MAX_YOUNG_MODULUS);

            BendingConstraints.AddBatch(bendingBatch);
            for (int i = 0; i < usedParticles - (closed?0:2); i++)
            {
                // rope bending constraints always try to keep it completely straight:
                bendingBatch.AddConstraint(i, (i + 2) % usedParticles, (i + 1) % usedParticles, 0, 0, 1);

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiRope: adding bend constraints...", i / (float)usedParticles));
                }
            }

            // Initialize tether constraints:
            TetherConstraints.Clear();

            // Initialize pin constraints:
            PinConstraints.Clear();
            ObiPinConstraintBatch pinBatch = new ObiPinConstraintBatch(false, false, 0, MAX_YOUNG_MODULUS);

            PinConstraints.AddBatch(pinBatch);

            initializing = false;
            initialized  = true;

            RegenerateRestPositions();
        }
Ejemplo n.º 3
0
        /**
         * Generates the particle based physical representation of the cloth mesh. This is the initialization method for the cloth object
         * and should not be called directly once the object has been created.
         */
        public override IEnumerator GeneratePhysicRepresentationForMesh()
        {
            initialized  = false;
            initializing = false;

            if (sharedTopology == null)
            {
                Debug.LogError("No ObiMeshTopology provided. Cannot initialize physical representation.");
                yield break;
            }
            else if (!sharedTopology.Initialized)
            {
                Debug.LogError("The provided ObiMeshTopology contains no data. Cannot initialize physical representation.");
                yield break;
            }

            initializing = true;

            RemoveFromSolver(null);

            ResetTopology();

            maxVertexValency = 0;

            pooledParticles = (int)((topology.heFaces.Length * 3 - topology.heVertices.Length) * tearCapacity);
            usedParticles   = topology.heVertices.Length;

            int totalParticles = usedParticles + pooledParticles;

            active              = new bool[totalParticles];
            positions           = new Vector3[totalParticles];
            restPositions       = new Vector4[totalParticles];
            velocities          = new Vector3[totalParticles];
            vorticities         = new Vector3[totalParticles];
            invMasses           = new float[totalParticles];
            solidRadii          = new float[totalParticles];
            phases              = new int[totalParticles];
            areaContribution    = new float[totalParticles];
            tearResistance      = new float[totalParticles];
            deformableTriangles = new int[topology.heFaces.Length * 3];

            // Create a particle for each vertex, and gather per-vertex data (area, valency)
            for (int i = 0; i < topology.heVertices.Length; i++)
            {
                Oni.Vertex vertex = topology.heVertices[i];

                // Get the particle's area contribution.
                areaContribution[i] = 0;
                foreach (Oni.Face face in topology.GetNeighbourFacesEnumerator(vertex))
                {
                    areaContribution[i] += topology.GetFaceArea(face) / 3;
                }

                // Calculate particle's valency:
                int valency = 0;
                foreach (Oni.HalfEdge edge in topology.GetNeighbourEdgesEnumerator(vertex))
                {
                    valency++;
                }
                maxVertexValency = Mathf.Max(maxVertexValency, valency);

                // Get the shortest neighbour edge, particle radius will be half of its length.
                float minEdgeLength = Single.MaxValue;
                foreach (Oni.HalfEdge edge in topology.GetNeighbourEdgesEnumerator(vertex))
                {
                    minEdgeLength = Mathf.Min(minEdgeLength, Vector3.Distance(topology.heVertices[topology.GetHalfEdgeStartVertex(edge)].position,
                                                                              topology.heVertices[edge.endVertex].position));
                }
                active[i]           = true;
                tearResistance[i]   = 1;
                invMasses[i]        = (areaContribution[i] > 0) ? (1.0f / (0.05f * areaContribution[i])) : 0;
                positions[i]        = vertex.position;
                restPositions[i]    = positions[i];
                restPositions[i][3] = 0;         // activate rest position.
                solidRadii[i]       = minEdgeLength * 0.5f;
                phases[i]           = Oni.MakePhase(gameObject.layer, selfCollisions?Oni.ParticlePhase.SelfCollide:0);

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating particles...", i / (float)topology.heVertices.Length));
                }
            }

            // Initialize basic data for pooled particles:
            for (int i = topology.heVertices.Length; i < pooledParticles; i++)
            {
                active[i]         = false;
                tearResistance[i] = 1;
                invMasses[i]      = 1.0f / 0.05f;
                solidRadii[i]     = 0.1f;
                phases[i]         = Oni.MakePhase(gameObject.layer, selfCollisions?Oni.ParticlePhase.SelfCollide:0);

                if (i % 100 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiRope: generating pooled particles...", i / (float)pooledParticles));
                }
            }

            // Generate deformable triangles:
            for (int i = 0; i < topology.heFaces.Length; i++)
            {
                Oni.Face face = topology.heFaces[i];

                Oni.HalfEdge e1 = topology.heHalfEdges[face.halfEdge];
                Oni.HalfEdge e2 = topology.heHalfEdges[e1.nextHalfEdge];
                Oni.HalfEdge e3 = topology.heHalfEdges[e2.nextHalfEdge];

                deformableTriangles[i * 3]     = e1.endVertex;
                deformableTriangles[i * 3 + 1] = e2.endVertex;
                deformableTriangles[i * 3 + 2] = e3.endVertex;

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating deformable geometry...", i / (float)topology.heFaces.Length));
                }
            }

            List <ObiMeshTopology.HEEdge> edges = topology.GetEdgeList();

            DistanceConstraints.Clear();
            ObiDistanceConstraintBatch distanceBatch = new ObiDistanceConstraintBatch(false, false);

            DistanceConstraints.AddBatch(distanceBatch);

            // Initialize constraint-halfedge map for cloth tearing purposes: TODO: reset on awake!!!
            distanceConstraintMap = new int[topology.heHalfEdges.Length];
            for (int i = 0; i < distanceConstraintMap.Length; i++)
            {
                distanceConstraintMap[i] = -1;
            }

            // Create distance springs:
            for (int i = 0; i < edges.Count; i++)
            {
                distanceConstraintMap[edges[i].halfEdgeIndex] = i;
                Oni.HalfEdge hedge       = topology.heHalfEdges[edges[i].halfEdgeIndex];
                Oni.Vertex   startVertex = topology.heVertices[topology.GetHalfEdgeStartVertex(hedge)];
                Oni.Vertex   endVertex   = topology.heVertices[hedge.endVertex];

                distanceBatch.AddConstraint(topology.GetHalfEdgeStartVertex(hedge), hedge.endVertex, Vector3.Distance(startVertex.position, endVertex.position), 1, 1);

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating structural constraints...", i / (float)topology.heHalfEdges.Length));
                }
            }

            // Create aerodynamic constraints:
            AerodynamicConstraints.Clear();
            ObiAerodynamicConstraintBatch aeroBatch = new ObiAerodynamicConstraintBatch(false, false);

            AerodynamicConstraints.AddBatch(aeroBatch);

            for (int i = 0; i < topology.heVertices.Length; i++)
            {
                aeroBatch.AddConstraint(i,
                                        areaContribution[i],
                                        AerodynamicConstraints.dragCoefficient,
                                        AerodynamicConstraints.liftCoefficient);

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating aerodynamic constraints...", i / (float)topology.heFaces.Length));
                }
            }

            BendingConstraints.Clear();
            ObiBendConstraintBatch bendBatch = new ObiBendConstraintBatch(false, false);

            BendingConstraints.AddBatch(bendBatch);

            bendConstraintOffsets = new int[topology.heVertices.Length + 1];

            Dictionary <int, int> cons = new Dictionary <int, int>();

            for (int i = 0; i < topology.heVertices.Length; i++)
            {
                Oni.Vertex vertex = topology.heVertices[i];

                bendConstraintOffsets[i] = bendBatch.ConstraintCount;

                foreach (Oni.Vertex n1 in topology.GetNeighbourVerticesEnumerator(vertex))
                {
                    float      cosBest = 0;
                    Oni.Vertex vBest   = n1;

                    foreach (Oni.Vertex n2 in topology.GetNeighbourVerticesEnumerator(vertex))
                    {
                        float cos = Vector3.Dot((n1.position - vertex.position).normalized,
                                                (n2.position - vertex.position).normalized);
                        if (cos < cosBest)
                        {
                            cosBest = cos;
                            vBest   = n2;
                        }
                    }

                    if (!cons.ContainsKey(vBest.index) || cons[vBest.index] != n1.index)
                    {
                        cons[n1.index] = vBest.index;

                        float[] restPos = new float[] { n1.position[0], n1.position[1], n1.position[2],
                                                        vBest.position[0], vBest.position[1], vBest.position[2],
                                                        vertex.position[0], vertex.position[1], vertex.position[2] };
                        float restBend = Oni.BendingConstraintRest(restPos);
                        bendBatch.AddConstraint(n1.index, vBest.index, vertex.index, restBend, 0, 1);
                    }
                }

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: adding bend constraints...", i / (float)sharedTopology.heVertices.Length));
                }
            }
            bendConstraintOffsets[topology.heVertices.Length] = bendBatch.ConstraintCount;

            //Initialize pin constraints:
            PinConstraints.Clear();
            ObiPinConstraintBatch pinBatch = new ObiPinConstraintBatch(false, false);

            PinConstraints.AddBatch(pinBatch);

            AddToSolver(null);

            initializing = false;
            initialized  = true;

            InitializeWithRegularMesh();

            pooledVertices = (int)((topology.heFaces.Length * 3 - sharedMesh.vertexCount) * tearCapacity);
        }
Ejemplo n.º 4
0
        /**
         * Generates the particle based physical representation of the cloth mesh. This is the initialization method for the cloth object
         * and should not be called directly once the object has been created.
         */
        protected override IEnumerator Initialize()
        {
            initialized  = false;
            initializing = false;

            if (sharedTopology == null)
            {
                Debug.LogError("No ObiMeshTopology provided. Cannot initialize physical representation.");
                yield break;
            }
            else if (!sharedTopology.Initialized)
            {
                Debug.LogError("The provided ObiMeshTopology contains no data. Cannot initialize physical representation.");
                yield break;
            }

            initializing = true;

            RemoveFromSolver(null);

            GameObject.DestroyImmediate(topology);
            topology = GameObject.Instantiate(sharedTopology);

            active              = new bool[topology.heVertices.Length];
            positions           = new Vector3[topology.heVertices.Length];
            restPositions       = new Vector4[topology.heVertices.Length];
            velocities          = new Vector3[topology.heVertices.Length];
            invMasses           = new float[topology.heVertices.Length];
            principalRadii      = new Vector3[topology.heVertices.Length];
            phases              = new int[topology.heVertices.Length];
            areaContribution    = new float[topology.heVertices.Length];
            deformableTriangles = new int[topology.heFaces.Length * 3];

            initialScaleMatrix.SetTRS(Vector3.zero, Quaternion.identity, transform.lossyScale);

            // Create a particle for each vertex:
            for (int i = 0; i < topology.heVertices.Length; i++)
            {
                Oni.Vertex vertex = topology.heVertices[i];

                // Get the particle's area contribution.
                areaContribution[i] = 0;
                foreach (Oni.Face face in topology.GetNeighbourFacesEnumerator(vertex))
                {
                    areaContribution[i] += topology.GetFaceArea(face) / 3;
                }

                // Get the shortest neighbour edge, particle radius will be half of its length.
                float minEdgeLength = Single.MaxValue;
                foreach (Oni.HalfEdge edge in topology.GetNeighbourEdgesEnumerator(vertex))
                {
                    // vertices at each end of the edge:
                    Vector3 v1 = initialScaleMatrix * topology.heVertices[topology.GetHalfEdgeStartVertex(edge)].position;
                    Vector3 v2 = initialScaleMatrix * topology.heVertices[edge.endVertex].position;

                    minEdgeLength = Mathf.Min(minEdgeLength, Vector3.Distance(v1, v2));
                }

                active[i]           = true;
                invMasses[i]        = (skinnedMeshRenderer == null && areaContribution[i] > 0) ? (1.0f / (DEFAULT_PARTICLE_MASS * areaContribution[i])) : 0;
                positions[i]        = initialScaleMatrix * vertex.position;
                restPositions[i]    = positions[i];
                restPositions[i][3] = 1;         // activate rest position.
                principalRadii[i]   = Vector3.one * minEdgeLength * 0.5f;
                phases[i]           = Oni.MakePhase(1, selfCollisions?Oni.ParticlePhase.SelfCollide:0);

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating particles...", i / (float)topology.heVertices.Length));
                }
            }

            // Generate deformable triangles:
            for (int i = 0; i < topology.heFaces.Length; i++)
            {
                Oni.Face face = topology.heFaces[i];

                Oni.HalfEdge e1 = topology.heHalfEdges[face.halfEdge];
                Oni.HalfEdge e2 = topology.heHalfEdges[e1.nextHalfEdge];
                Oni.HalfEdge e3 = topology.heHalfEdges[e2.nextHalfEdge];

                deformableTriangles[i * 3]     = e1.endVertex;
                deformableTriangles[i * 3 + 1] = e2.endVertex;
                deformableTriangles[i * 3 + 2] = e3.endVertex;

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating deformable geometry...", i / (float)topology.heFaces.Length));
                }
            }

            List <ObiMeshTopology.HEEdge> edges = topology.GetEdgeList();

            DistanceConstraints.Clear();
            ObiDistanceConstraintBatch distanceBatch = new ObiDistanceConstraintBatch(true, false);

            DistanceConstraints.AddBatch(distanceBatch);

            // Create distance springs:
            for (int i = 0; i < edges.Count; i++)
            {
                Oni.HalfEdge hedge       = topology.heHalfEdges[edges[i].halfEdgeIndex];
                Oni.Vertex   startVertex = topology.heVertices[topology.GetHalfEdgeStartVertex(hedge)];
                Oni.Vertex   endVertex   = topology.heVertices[hedge.endVertex];

                distanceBatch.AddConstraint(topology.GetHalfEdgeStartVertex(hedge), hedge.endVertex, Vector3.Distance(initialScaleMatrix * startVertex.position, initialScaleMatrix * endVertex.position), 1, 1);

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating structural constraints...", i / (float)topology.heHalfEdges.Length));
                }
            }

            // Cook distance constraints, for better cache and SIMD use:
            distanceBatch.Cook();

            // Create aerodynamic constraints:
            AerodynamicConstraints.Clear();
            ObiAerodynamicConstraintBatch aeroBatch = new ObiAerodynamicConstraintBatch(false, false);

            AerodynamicConstraints.AddBatch(aeroBatch);

            for (int i = 0; i < topology.heVertices.Length; i++)
            {
                aeroBatch.AddConstraint(i,
                                        areaContribution[i],
                                        AerodynamicConstraints.dragCoefficient,
                                        AerodynamicConstraints.liftCoefficient);

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating aerodynamic constraints...", i / (float)topology.heFaces.Length));
                }
            }

            //Create skin constraints (if needed)
            if (skinnedMeshRenderer != null)
            {
                SkinConstraints.Clear();
                ObiSkinConstraintBatch skinBatch = new ObiSkinConstraintBatch(true, false);
                SkinConstraints.AddBatch(skinBatch);

                for (int i = 0; i < topology.heVertices.Length; ++i)
                {
                    skinBatch.AddConstraint(i, initialScaleMatrix * topology.heVertices[i].position, Vector3.up, 0.05f, 0.1f, 0, 1);

                    if (i % 500 == 0)
                    {
                        yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating skin constraints...", i / (float)topology.heVertices.Length));
                    }
                }

                for (int i = 0; i < topology.normals.Length; ++i)
                {
                    skinBatch.skinNormals[topology.visualMap[i]] = topology.normals[i];
                }

                skinBatch.Cook();
            }

            //Create pressure constraints if the mesh is closed:
            VolumeConstraints.Clear();

            if (topology.IsClosed)
            {
                ObiVolumeConstraintBatch volumeBatch = new ObiVolumeConstraintBatch(false, false);
                VolumeConstraints.AddBatch(volumeBatch);

                float avgInitialScale = (initialScaleMatrix.m00 + initialScaleMatrix.m11 + initialScaleMatrix.m22) * 0.33f;

                int[] triangleIndices = new int[topology.heFaces.Length * 3];
                for (int i = 0; i < topology.heFaces.Length; i++)
                {
                    Oni.Face face = topology.heFaces[i];

                    Oni.HalfEdge e1 = topology.heHalfEdges[face.halfEdge];
                    Oni.HalfEdge e2 = topology.heHalfEdges[e1.nextHalfEdge];
                    Oni.HalfEdge e3 = topology.heHalfEdges[e2.nextHalfEdge];

                    triangleIndices[i * 3]     = e1.endVertex;
                    triangleIndices[i * 3 + 1] = e2.endVertex;
                    triangleIndices[i * 3 + 2] = e3.endVertex;

                    if (i % 500 == 0)
                    {
                        yield return(new CoroutineJob.ProgressInfo("ObiCloth: generating volume constraints...", i / (float)topology.heFaces.Length));
                    }
                }

                volumeBatch.AddConstraint(triangleIndices, topology.MeshVolume * avgInitialScale, 1, 1);
            }

            //Create bending constraints:
            BendingConstraints.Clear();
            ObiBendConstraintBatch bendBatch = new ObiBendConstraintBatch(true, false);

            BendingConstraints.AddBatch(bendBatch);

            Dictionary <int, int> cons = new Dictionary <int, int>();

            for (int i = 0; i < topology.heVertices.Length; i++)
            {
                Oni.Vertex vertex = topology.heVertices[i];

                foreach (Oni.Vertex n1 in topology.GetNeighbourVerticesEnumerator(vertex))
                {
                    float      cosBest = 0;
                    Oni.Vertex vBest   = n1;

                    foreach (Oni.Vertex n2 in topology.GetNeighbourVerticesEnumerator(vertex))
                    {
                        float cos = Vector3.Dot((n1.position - vertex.position).normalized,
                                                (n2.position - vertex.position).normalized);
                        if (cos < cosBest)
                        {
                            cosBest = cos;
                            vBest   = n2;
                        }
                    }

                    if (!cons.ContainsKey(vBest.index) || cons[vBest.index] != n1.index)
                    {
                        cons[n1.index] = vBest.index;

                        Vector3 n1Pos     = initialScaleMatrix * n1.position;
                        Vector3 bestPos   = initialScaleMatrix * vBest.position;
                        Vector3 vertexPos = initialScaleMatrix * vertex.position;

                        float[] bendRestPositions = new float[] { n1Pos[0], n1Pos[1], n1Pos[2],
                                                                  bestPos[0], bestPos[1], bestPos[2],
                                                                  vertexPos[0], vertexPos[1], vertexPos[2] };

                        float restBend = Oni.BendingConstraintRest(bendRestPositions);
                        bendBatch.AddConstraint(n1.index, vBest.index, vertex.index, restBend, 0, 1);
                    }
                }

                if (i % 500 == 0)
                {
                    yield return(new CoroutineJob.ProgressInfo("ObiCloth: adding bend constraints...", i / (float)sharedTopology.heVertices.Length));
                }
            }

            bendBatch.Cook();

            // Initialize tether constraints:
            TetherConstraints.Clear();

            // Initialize pin constraints:
            PinConstraints.Clear();
            ObiPinConstraintBatch pinBatch = new ObiPinConstraintBatch(false, false);

            PinConstraints.AddBatch(pinBatch);

            initializing = false;
            initialized  = true;

            if (skinnedMeshRenderer == null)
            {
                InitializeWithRegularMesh();
            }
            else
            {
                InitializeWithSkinnedMesh();
            }
        }