Ejemplo n.º 1
0
        static void RunFinalTests(CandidateSolution <double, StateData> candidate, out double finalScore, out string testDetails)
        {
            var           sampleData = new Dataset();
            StringBuilder sb         = new StringBuilder();

            sb.AppendLine("Test results at " + DateTime.Now.ToShortDateString() + " " + DateTime.Now.ToShortTimeString());

            // run through our test data and see how close the answer the genetic program
            // comes up with is to the training data.  Lower fitness scores are better than bigger scores
            double totalDifference = 0;

            while (true)
            {
                var row = sampleData.GetRowOfTestingData();
                if (row == null)
                {
                    break;
                }

                // populate vars with values from row of the training data
                for (int i = 0; i < Dataset.NumColumns; i++)
                {
                    if (i != Dataset.LabelColumnIndex)
                    {
                        candidate.SetVariableValue("v" + i, row[i]);
                    }
                }
                var result = candidate.Evaluate();

                // now figure the difference between the calculated value and the training data
                var actualAnswer = row[Dataset.LabelColumnIndex];
                var diff         = result - actualAnswer;
                totalDifference += diff * diff;
                Console.WriteLine("Ans: " + actualAnswer.ToString(" 0") + " AI: " + result.ToString("0.00"));
                sb.AppendLine(actualAnswer.ToString("0.0") + ", " + result.ToString("0.000"));
            }

            totalDifference = Math.Sqrt(totalDifference);
            finalScore      = (float)totalDifference;
            sb.AppendLine("\"Final score\", " + finalScore.ToString("0.000"));
            testDetails = sb.ToString();
        }
Ejemplo n.º 2
0
        static float EvaluateCandidate(CandidateSolution <double, StateData> candidate)
        {
            var sampleData = new Dataset();

            // run through our test data and see how close the answer the genetic program
            // comes up with is to the training data.  Lower fitness scores are better than bigger scores
            double totalDifference = 0;

            while (true)
            {
                var row = sampleData.GetRowOfTrainingData();
                if (row == null)
                {
                    break;
                }

                // populate vars with values from row of the training data, and then get the calculated value
                for (int i = 0; i < Dataset.NumColumns; i++)
                {
                    if (i != Dataset.LabelColumnIndex)
                    {
                        candidate.SetVariableValue("v" + i, row[i]);
                    }
                }
                var result = candidate.Evaluate();

                // now figure the difference between the calculated value and the training data
                var actualAnswer = row[Dataset.LabelColumnIndex];
                var diff         = result - actualAnswer;
                totalDifference += diff * diff;
            }

            // sqrt of the summed squared diffences
            totalDifference = Math.Sqrt(totalDifference);

            // fitness function returns a float
            return((float)totalDifference);
        }