Beispiel #1
0
        /**
         * Given the 64 bit OCR data for binarised image and the
         * expected outcome value, tests the network for a correct output.
         *
         * Runs the 64 bit inputs through the network and checks
         * which output it gets.
         *
         * @param character: OCRCharacter obj with 64 bit numeric inputs
         *                    representing the OCR data & identifier.
         * @return good or bad (true or false).
         */
        public bool recallNetwork(OCRCharacter character)
        {
            // Populate the input neurons. //
            int answer = character.getIdentifier();

            int index = recallNetworkGuess(character);

            bool correct = index == answer ? true : false;

            // Output feedback
            Console.WriteLine("Input data for: " + answer + " / output: "
                              + index + " (" + answer + ")" + " correct: " + correct);

            return(correct);
        }
Beispiel #2
0
        /**
         * Given a a list of neighbouring characters, checks which character kind has
         * the most frequent occurrence (majority)
         * @param neighbors
         * @param useDistanceScore: True use scoring based on euclidean distance for
         *          classification, False uses majority votes.
         * @return charIdentifier: character which has highest majority.
         */
        private static int classify(List <OCRCharacter> neighbors, bool useDistanceScore)
        {
            Dictionary <int, double> charOccurenceList = new Dictionary <int, double>();

            int num = neighbors.Count;

            for (int index = 0; index < num; index++)
            {
                OCRCharacter temp = neighbors[index];
                int          key  = temp.getIdentifier();

                // If character kind has not been added yet.
                if (!charOccurenceList.ContainsKey(key))
                {
                    // Best practise is to add the total distance of the neighbour char type as score value.

                    if (useDistanceScore)
                    {
                        charOccurenceList.Add(key, 1 / temp.distance);
                    }
                    else
                    {
                        charOccurenceList.Add(key, 1.0);
                    }
                }
                // If already added, add occurence majority vote
                else
                {
                    double value = charOccurenceList[key];
                    // Best practise is to add the total distance of the neighbour char type as score value.

                    if (useDistanceScore)
                    {
                        value += 1 / temp.distance;
                    }
                    else
                    {
                        value += 1.0;
                    }
                    charOccurenceList[key] = value; // update existing value + 1
                }
            }

            // Check which kind of identifiers have the most of the same type
            double majorityScore  = 0;
            int    charIdentifier = -1;

            // Loop and determine which char identifier scored the highest

            foreach (KeyValuePair <int, double> entry in charOccurenceList)
            {
                int    identifier = entry.Key;
                double value      = entry.Value;

                if (value > majorityScore)
                {
                    majorityScore  = value;
                    charIdentifier = identifier;
                }
            }

            return(charIdentifier);
        }