Beispiel #1
0
        /// <summary>
        /// Compute the output from this synapse.
        /// </summary>
        /// <param name="input">The input to this synapse.</param>
        /// <returns>The output from this synapse.</returns>
        public IMLData Compute(IMLData input)
        {
            var result = new double[_outputCount];

            // clear from previous
            EngineArray.Fill(_preActivation, 0.0);
            EngineArray.Fill(_postActivation, 0.0);
            _postActivation[0] = 1.0;

            // copy input
            for (int i = 0; i < _inputCount; i++)
            {
                _postActivation[i + 1] = input[i];
            }

            // iterate through the network activationCycles times
            for (int i = 0; i < ActivationCycles; ++i)
            {
                InternalCompute();
            }

            // copy output
            for (int i = 0; i < _outputCount; i++)
            {
                result[i] = _postActivation[_outputIndex + i];
            }

            return(new BasicMLData(result));
        }
        protected double[][] EstimateGamma(double[][][] xi,
                                           ForwardBackwardCalculator fbc)
        {
            double[][] gamma = EngineArray.AllocateDouble2D(xi.Length + 1, xi[0].Length);

            for (int t = 0; t < (xi.Length + 1); t++)
            {
                EngineArray.Fill(gamma[t], 0.0);
            }

            for (int t = 0; t < xi.Length; t++)
            {
                for (int i = 0; i < xi[0].Length; i++)
                {
                    for (int j = 0; j < xi[0].Length; j++)
                    {
                        gamma[t][i] += xi[t][i][j];
                    }
                }
            }

            for (int j = 0; j < xi[0].Length; j++)
            {
                for (int i = 0; i < xi[0].Length; i++)
                {
                    gamma[xi.Length][j] += xi[xi.Length - 1][i][j];
                }
            }

            return(gamma);
        }
Beispiel #3
0
        /// <summary>
        ///     Create an array of doubles to hold the specified flat network.
        /// </summary>
        /// <param name="flat">The flat network to use as a model.</param>
        /// <returns>The new array.</returns>
        public double[] CreateParams(FlatNetwork flat)
        {
            var result = new double[flat.ActivationFunctions.Length];

            EngineArray.Fill(result, 1);
            return(result);
        }
Beispiel #4
0
        /// <summary>
        /// Construct a Nelder Mead trainer with a definable step.
        /// </summary>
        /// <param name="network">The network to train.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="stepValue">The step value. This value defines, to some degree the range
        /// of different weights that will be tried.</param>
        public NelderMeadTraining(BasicNetwork network,
                                  IMLDataSet training, double stepValue) :
            base(TrainingImplementationType.OnePass)
        {
            this._network = network;
            Training      = training;

            _start          = NetworkCODEC.NetworkToArray(network);
            _trainedWeights = NetworkCODEC.NetworkToArray(network);

            int n = _start.Length;

            _p      = new double[n * (n + 1)];
            _pstar  = new double[n];
            _p2Star = new double[n];
            _pbar   = new double[n];
            _y      = new double[n + 1];

            _nn  = n + 1;
            _del = 1.0;
            _rq  = EncogFramework.DefaultDoubleEqual * n;

            _step   = new double[NetworkCODEC.NetworkSize(network)];
            _jcount = _konvge = 500;
            EngineArray.Fill(_step, stepValue);
        }
Beispiel #5
0
        /// <inheritdoc />
        private void InternalCompute(int outputNeuron)
        {
            int row   = 0;
            var error = new ErrorCalculation();

            var derivative = new double[_weightCount];

            // Loop over every training element
            foreach (IMLDataPair pair in _training)
            {
                EngineArray.Fill(derivative, 0);
                IMLData networkOutput = _network.Compute(pair.Input);
                double  e             = pair.Ideal[outputNeuron] - networkOutput[outputNeuron];
                error.UpdateError(networkOutput[outputNeuron], pair.Ideal[outputNeuron]);

                int currentWeight = 0;

                // loop over the output weights
                int outputFeedCount = _network.GetLayerTotalNeuronCount(_network.LayerCount - 2);
                for (int i = 0; i < _network.OutputCount; i++)
                {
                    for (int j = 0; j < outputFeedCount; j++)
                    {
                        double jc;

                        if (i == outputNeuron)
                        {
                            jc = ComputeDerivative(pair.Input, outputNeuron,
                                                   currentWeight, _dStep,
                                                   networkOutput[outputNeuron], row);
                        }
                        else
                        {
                            jc = 0;
                        }

                        _gradients[currentWeight] += jc * e;
                        derivative[currentWeight]  = jc;
                        currentWeight++;
                    }
                }

                // Loop over every weight in the neural network
                while (currentWeight < _network.Flat.Weights.Length)
                {
                    double jc = ComputeDerivative(
                        pair.Input, outputNeuron, currentWeight,
                        _dStep,
                        networkOutput[outputNeuron], row);
                    derivative[currentWeight]  = jc;
                    _gradients[currentWeight] += jc * e;
                    currentWeight++;
                }

                row++;
                UpdateHessian(derivative);
            }

            _sse += error.CalculateSSE();
        }
Beispiel #6
0
        /// <inheritdoc/>
        public void Fit(IMLDataSet co)
        {
            var weights = new double[co.Count];

            EngineArray.Fill(weights, 1.0 / co.Count);

            Fit(co, weights);
        }
Beispiel #7
0
        public void Run(int index)
        {
            IMLDataPair pair = _training[index];

            Process(pair);
            _owner.Report(_gradients, 0, null);
            EngineArray.Fill(_gradients, 0);
        }
Beispiel #8
0
        /// <summary>
        /// Finalize the structure of this Bayesian network.
        /// </summary>
        public void FinalizeStructure()
        {
            foreach (BayesianEvent e in _eventMap.Values)
            {
                e.FinalizeStructure();
            }

            if (Query != null)
            {
                Query.FinalizeStructure();
            }

            _inputPresent = new bool[_events.Count];
            EngineArray.Fill(_inputPresent, true);
            _classificationTarget = -1;
        }
        /// <inheritdoc/>
        public void Run()
        {
            _error = 0;
            EngineArray.Fill(_totDeriv, 0);
            EngineArray.Fill(_gradients, 0);


            // Loop over every training element
            for (int i = _low; i <= _high; i++)
            {
                _training.GetRecord(i, _pair);

                EngineArray.Fill(_derivative, 0);
                Process(_outputNeuron, _pair.InputArray, _pair.IdealArray);
            }
        }
        /// <inheritdoc/>
        public void Run()
        {
            _error = 0;
            EngineArray.Fill(_totDeriv, 0);
            EngineArray.Fill(_gradients, 0);


            // Loop over every training element
            for (int i = _low; i <= _high; i++)
            {
                var pair = _training[i];

                EngineArray.Fill(_derivative, 0);
                Process(_outputNeuron, pair);
            }
        }
Beispiel #11
0
        /// <inheritdoc />
        public void Run()
        {
            _error = 0;
            EngineArray.Fill(_hessian, 0);
            EngineArray.Fill(_totDeriv, 0);
            EngineArray.Fill(_gradients, 0);

            var derivative = new double[_weightCount];

            // Loop over every training element
            for (int i = _low; i <= _high; i++)
            {
                IMLDataPair pair = _training[i];

                EngineArray.Fill(derivative, 0);
                Process(_outputNeuron, derivative, pair);
            }
        }
        /// <summary>
        /// Fit this distribution to the specified data, with weights.
        /// </summary>
        /// <param name="co">The data to fit to.</param>
        /// <param name="weights">The weights.</param>
        public void Fit(IMLDataSet co, double[] weights)
        {
            if ((co.Count < 1) || (co.Count != weights.Length))
            {
                throw new EncogError("Invalid weight size.");
            }

            for (int i = 0; i < _probabilities.Length; i++)
            {
                EngineArray.Fill(_probabilities[i], 0.0);

                int j = 0;
                foreach (IMLDataPair o in co)
                {
                    _probabilities[i][(int)o.Input[i]] += weights[j++];
                }
            }
        }
Beispiel #13
0
        /// <summary>
        /// Init the process.
        /// </summary>
        ///
        private void Init()
        {
            // fix flat spot, if needed
            _flatSpot = new double[_flat.ActivationFunctions.Length];

            if (FixFlatSpot)
            {
                for (int i = 0; i < _flat.ActivationFunctions.Length; i++)
                {
                    IActivationFunction af = _flat.ActivationFunctions[i];
                    if (af is ActivationSigmoid)
                    {
                        _flatSpot[i] = 0.1;
                    }
                    else
                    {
                        _flatSpot[i] = 0.0;
                    }
                }
            }
            else
            {
                EngineArray.Fill(_flatSpot, 0.0);
            }


            var determine = new DetermineWorkload(
                _numThreads, (int)_indexable.Count);

            _workers = new GradientWorker[determine.ThreadCount];

            int index = 0;


            // handle CPU
            foreach (IntRange r in determine.CalculateWorkers())
            {
                _workers[index++] = new GradientWorker(((FlatNetwork)_network.Flat.Clone()),
                                                       this, _indexable.OpenAdditional(), r.Low,
                                                       r.High, _flatSpot, ErrorFunction);
            }

            InitOthers();
        }
 /// <summary>
 /// Perform the gradient calculation for the specified index range.
 /// </summary>
 ///
 public void Run()
 {
     try
     {
         _errorCalculation.Reset();
         for (int i = _low; i <= _high; i++)
         {
             _training.GetRecord(i, _pair);
             Process(_pair.InputArray, _pair.IdealArray, _pair.Significance);
         }
         double error = _errorCalculation.Calculate();
         _owner.Report(_gradients, error, null);
         EngineArray.Fill(_gradients, 0);
     }
     catch (Exception ex)
     {
         _owner.Report(null, 0, ex);
     }
 }
Beispiel #15
0
 /// <summary>
 /// Perform the gradient calculation for the specified index range.
 /// </summary>
 ///
 public void Run()
 {
     try
     {
         _errorCalculation.Reset();
         for (int i = _low; i <= _high; i++)
         {
             var pair = _training[i];
             Process(pair);
         }
         double error = _errorCalculation.Calculate();
         _owner.Report(_gradients, error, null);
         EngineArray.Fill(_gradients, 0);
     }
     catch (Exception ex)
     {
         _owner.Report(null, 0, ex);
     }
 }
Beispiel #16
0
        /// <summary>
        /// Construct the calculator.
        /// </summary>
        /// <param name="seq">The sequence.</param>
        /// <param name="hmm">The HMM.</param>
        /// <param name="doAlpha">Should alpha be calculated.</param>
        /// <param name="doBeta">Should beta be calculated.</param>
        public ForwardBackwardScaledCalculator(
            IMLDataSet seq, HiddenMarkovModel hmm,
            bool doAlpha, bool doBeta)
        {
            if (seq.Count < 1)
            {
                throw new EncogError("Count cannot be less than one.");
            }

            _ctFactors = new double[seq.Count];
            EngineArray.Fill(_ctFactors, 0.0);

            ComputeAlpha(hmm, seq);

            if (doBeta)
            {
                ComputeBeta(hmm, seq);
            }

            ComputeProbability(seq, hmm, doAlpha, doBeta);
        }
        public void Update()
        {
            if (IterationNumber == 0)
            {
                UpdateRule.Init(this);
            }

            PreIteration();

            UpdateRule.Update(_gradients, _flat.Weights);
            Error = _errorCalculation.Calculate();

            PostIteration();

            EngineArray.Fill(_gradients, 0);
            _errorCalculation.Reset();

            if (Training is BatchDataSet)
            {
                ((BatchDataSet)Training).Advance();
            }
        }
 /// <summary>
 /// Perform the gradient calculation for the specified index range.
 /// </summary>
 ///
 public virtual void Run()
 {
     try
     {
         this.stopwatch.Reset();
         this.stopwatch.Start();
         this.errorCalculation.Reset();
         for (int i = this.low; i <= this.high; i++)
         {
             this.training.GetRecord(i, this.pair);
             Process(this.pair.InputArray, this.pair.IdealArray);
         }
         double error = this.errorCalculation.Calculate();
         this.owner.Report(this.gradients, error, null);
         EngineArray.Fill(this.gradients, 0);
         this.stopwatch.Stop();
         this.elapsedTime = this.stopwatch.ElapsedTicks;
     }
     catch (Exception ex)
     {
         this.owner.Report(null, 0, ex);
     }
 }
        public void Iteration()
        {
            HiddenMarkovModel nhmm;

            nhmm = _method.Clone();

            var allGamma = new double[_training.SequenceCount][][];

            double[][] aijNum = EngineArray.AllocateDouble2D(_method.StateCount, _method.StateCount);
            var        aijDen = new double[_method.StateCount];

            EngineArray.Fill(aijDen, 0.0);
            for (int i = 0; i < _method.StateCount; i++)
            {
                EngineArray.Fill(aijNum[i], 0.0);
            }

            int g = 0;

            foreach (IMLDataSet obsSeq in _training.Sequences)
            {
                ForwardBackwardCalculator fbc = GenerateForwardBackwardCalculator(
                    obsSeq, _method);

                double[][][] xi    = EstimateXi(obsSeq, fbc, _method);
                double[][]   gamma = allGamma[g++] = EstimateGamma(xi, fbc);

                for (int i = 0; i < _method.StateCount; i++)
                {
                    for (int t = 0; t < (obsSeq.Count - 1); t++)
                    {
                        aijDen[i] += gamma[t][i];

                        for (int j = 0; j < _method.StateCount; j++)
                        {
                            aijNum[i][j] += xi[t][i][j];
                        }
                    }
                }
            }

            for (int i = 0; i < _method.StateCount; i++)
            {
                if (aijDen[i] == 0.0)
                {
                    for (int j = 0; j < _method.StateCount; j++)
                    {
                        nhmm.TransitionProbability[i][j] =
                            _method.TransitionProbability[i][j];
                    }
                }
                else
                {
                    for (int j = 0; j < _method.StateCount; j++)
                    {
                        nhmm.TransitionProbability[i][j] = aijNum[i][j]
                                                           / aijDen[i];
                    }
                }
            }

            /* compute pi */
            for (int i = 0; i < _method.StateCount; i++)
            {
                nhmm.Pi[i] = 0.0;
            }

            for (int o = 0; o < _training.SequenceCount; o++)
            {
                for (int i = 0; i < _method.StateCount; i++)
                {
                    nhmm.Pi[i] += (allGamma[o][0][i] / _training
                                   .SequenceCount);
                }
            }

            /* compute pdfs */
            for (int i = 0; i < _method.StateCount; i++)
            {
                var    weights = new double[_training.Count];
                double sum     = 0.0;
                int    j       = 0;

                int o = 0;
                foreach (IMLDataSet obsSeq in _training.Sequences)
                {
                    for (int t = 0; t < obsSeq.Count; t++, j++)
                    {
                        sum += weights[j] = allGamma[o][t][i];
                    }
                    o++;
                }

                for (j--; j >= 0; j--)
                {
                    weights[j] /= sum;
                }

                IStateDistribution opdf = nhmm.StateDistributions[i];
                opdf.Fit(_training, weights);
            }

            _method = nhmm;
            Iterations++;
        }
Beispiel #20
0
        /// <summary>
        /// Calculate one iteration over the specified range.
        /// </summary>
        ///
        /// <param name="start">The starting position to calculate for.</param>
        /// <param name="size">The ending position to calculate for.</param>
        /// <param name="iterations">The number of iterations to execute.</param>
        /// <param name="learn">True, if we should learn.</param>
        public void Calculate(int start, int size, bool learn,
                              int iterations)
        {
            PrepareKernel();

            this.paramArray[KernelNetworkTrain.PARRAY_LEARN]      = (learn) ? 1 : 0;
            this.paramArray[KernelNetworkTrain.PARRAY_START]      = start;
            this.paramArray[KernelNetworkTrain.PARRAY_ITEMS_PER]  = size;
            this.paramArray[KernelNetworkTrain.PARRAY_ITERATIONS] = iterations;

            EngineArray.ArrayCopy(this.flat.Weights, this.weightInArray);

            this.Kernel.SetMemoryArgument(0, this.paramBuffer);
            this.Kernel.SetMemoryArgument(1, this.errorBuffer);
            this.Kernel.SetMemoryArgument(2, this.layerIndexBuffer);
            this.Kernel.SetMemoryArgument(3, this.layerCountBuffer);
            this.Kernel.SetMemoryArgument(4, this.layerFeedCountBuffer);
            this.Kernel.SetMemoryArgument(5, this.weightIndexBuffer);
            this.Kernel.SetMemoryArgument(6, this.inputBuffer);
            this.Kernel.SetMemoryArgument(7, this.idealBuffer);
            this.Kernel.SetMemoryArgument(8, this.weightInArrayBuffer);
            this.Kernel.SetMemoryArgument(9, this.weightOutArrayBuffer);
            this.Kernel.SetMemoryArgument(10, this.gradientOutBuffer);
            this.Kernel.SetMemoryArgument(11, this.activationTypeBuffer);
            this.Kernel.SetMemoryArgument(12, this.tempDataInBuffer);
            this.Kernel.SetMemoryArgument(13, this.tempDataOutBuffer);
            this.Kernel.SetMemoryArgument(14, this.gradientInBuffer);

            try
            {
                EncogCLQueue queue = this.device.Queue;

                EngineArray.Fill(this.gradients, 0);

                if (learn)
                {
                    this.paramArray[3] = 1;
                }
                else
                {
                    this.paramArray[3] = 0;
                }

                this.paramArray[4] = start;

                queue.Array2Buffer(this.weightInArray, this.weightInArrayBuffer);
                queue.Array2Buffer(this.tempDataArray, this.tempDataInBuffer);
                queue.Array2Buffer(this.gradients, this.gradientInBuffer);
                queue.Array2Buffer(this.paramArray, this.paramBuffer);

                // Execute the kernel
                queue.Execute(this);
                queue.WaitFinish();

                // Read the results
                queue.Buffer2Array(this.errorBuffer, this.errors);
                queue.Buffer2Array(this.weightOutArrayBuffer, this.weightOutArray);
                queue.Buffer2Array(this.tempDataOutBuffer, this.tempDataArray);
                queue.Buffer2Array(this.gradientOutBuffer, this.gradients);
            }
            catch (Cloo.ComputeException ex)
            {
                if (ex.Message.IndexOf("OutOfResources") != -1)
                {
                    throw new OutOfOpenCLResources(ex);
                }
                else
                {
                    throw new OpenCLError(ex);
                }
            }
            catch (Exception ex)
            {
                throw new OpenCLError(ex);
            }
        }
 /// <summary>
 /// Clear to zero.
 /// </summary>
 public void Clear()
 {
     EngineArray.Fill(_data, 0);
 }
Beispiel #22
0
 /// <summary>
 ///
 /// </summary>
 ///
 public void Reset(int seed)
 {
     CurrentState.Clear();
     EngineArray.Fill(_weights, 0.0d);
 }
Beispiel #23
0
 /// <inheritdoc/>
 public void Clear()
 {
     EngineArray.Fill(_gradients, 0);
     _hessianMatrix.Clear();
 }
Beispiel #24
0
 /// <summary>
 /// Clear any connection weights.
 /// </summary>
 ///
 public void Clear()
 {
     EngineArray.Fill(_weights, 0);
 }
Beispiel #25
0
        /// <summary>
        /// Compute the output from this synapse.
        /// </summary>
        ///
        /// <param name="input">The input to this synapse.</param>
        /// <returns>The output from this synapse.</returns>
        public virtual IMLData Compute(IMLData input)
        {
            var result = new double[_outputCount];

            if (_neurons.Count == 0)
            {
                throw new NeuralNetworkError(
                          "This network has not been evolved yet, it has no neurons in the NEAT synapse.");
            }

            int flushCount = 1;

            if (_snapshot)
            {
                flushCount = _networkDepth;
            }

            // iterate through the network FlushCount times
            for (int i = 0; i < flushCount; ++i)
            {
                int outputIndex = 0;
                int index       = 0;

                EngineArray.Fill(result, 0);

                // populate the input neurons
                while (_neurons[index].NeuronType == NEATNeuronType.Input)
                {
                    _neurons[index].Output = input[index];

                    index++;
                }

                // set the bias neuron
                _neurons[index++].Output = 1;

                while (index < _neurons.Count)
                {
                    NEATNeuron currentNeuron = _neurons[index];

                    double sum = 0;


                    foreach (NEATLink link  in  currentNeuron.InboundLinks)
                    {
                        double weight       = link.Weight;
                        double neuronOutput = link.FromNeuron.Output;
                        sum += weight * neuronOutput;
                    }

                    var d = new double[1];
                    d[0] = sum / currentNeuron.ActivationResponse;
                    _activationFunction.ActivationFunction(d, 0, d.Length);

                    _neurons[index].Output = d[0];

                    if (currentNeuron.NeuronType == NEATNeuronType.Output)
                    {
                        result[outputIndex++] = currentNeuron.Output;
                    }
                    index++;
                }
            }

            _outputActivationFunction.ActivationFunction(result, 0,
                                                         result.Length);

            return(new BasicMLData(result, false));
        }