/// <summary> /// Orders an array of three ResultPoints in an order [A,B,C] such that AB < AC and /// BC < AC and the angle between BC and BA is less than 180 degrees. /// </summary> public static void orderBestPatterns(ResultPoint[] patterns) { // Find distances between pattern centers float zeroOneDistance = distance(patterns[0], patterns[1]); float oneTwoDistance = distance(patterns[1], patterns[2]); float zeroTwoDistance = distance(patterns[0], patterns[2]); ResultPoint pointA, pointB, pointC; // Assume one closest to other two is B; A and C will just be guesses at first if (oneTwoDistance >= zeroOneDistance && oneTwoDistance >= zeroTwoDistance) { pointB = patterns[0]; pointA = patterns[1]; pointC = patterns[2]; } else if (zeroTwoDistance >= oneTwoDistance && zeroTwoDistance >= zeroOneDistance) { pointB = patterns[1]; pointA = patterns[0]; pointC = patterns[2]; } else { pointB = patterns[2]; pointA = patterns[0]; pointC = patterns[1]; } // Use cross product to figure out whether A and C are correct or flipped. // This asks whether BC x BA has a positive z component, which is the arrangement // we want for A, B, C. If it's negative, then we've got it flipped around and // should swap A and C. if (crossProductZ(pointA, pointB, pointC) < 0.0f) { ResultPoint temp = pointA; pointA = pointC; pointC = temp; } patterns[0] = pointA; patterns[1] = pointB; patterns[2] = pointC; }
/// <returns> /// distance between two points /// </returns> public static float distance(ResultPoint pattern1, ResultPoint pattern2) { return(MathUtils.distance(pattern1.x, pattern1.y, pattern2.x, pattern2.y)); }