static void Main(string[] args) { List <Dictionary <string, double> > docWordDicList = new List <Dictionary <string, double> >(); Dictionary <string, int> dictionary = new Dictionary <string, int>(); List <int> trainingAnswer = new List <int>(); Dictionary <string, double> wordIDFDictionary = new Dictionary <string, double>(); Hashtable stopWordTable = genStopwordTable(@"D:\work\KPMG\learning\project1\stopword.txt"); List <string> testFileNameList = new List <string>(); int dicSize = 5000; trainModel(@"D:\work\KPMG\learning\classification\project1_0422\test_data\1\Training", @"D:\work\KPMG\learning\classification\project1_0422\log", ref docWordDicList, ref dictionary, dicSize, ref trainingAnswer, ref wordIDFDictionary, stopWordTable ); KNN knn = new KNN(); knn.set(dicSize, docWordDicList.Count()); knn.initial(docWordDicList, dictionary, trainingAnswer); knn.train(3, 20); knn.getAveDistance(); //knn.genLog(@"D:\work\KPMG\learning\classification\project1_0422\log"); List <KeyValuePair <int, int> > testAnswer = runKnnTest(knn, @"D:\work\KPMG\learning\classification\project1_0422\test_data\1\Testing", @"D:\work\KPMG\learning\classification\project1_0422\test_data\log", dictionary, wordIDFDictionary, stopWordTable, ref testFileNameList); genStatistic(testAnswer, testFileNameList, @"D:\work\KPMG\learning\classification\project1_0422\log"); }
static void Main(string[] args) { List <Dictionary <string, double> > docWordDicList = new List <Dictionary <string, double> >(); Dictionary <string, int> dictionary = new Dictionary <string, int>(); List <int> trainingAnswer = new List <int>(); Dictionary <string, double> wordIDFDictionary = new Dictionary <string, double>(); Hashtable stopWordTable = genStopwordTable(STOP_WORD_PATH); List <string> testFileNameList = new List <string>(); int dicSize = 100; Console.WriteLine("==> Starting prepare data..."); NLPAdapter nlpAdapter = new NLPAdapter(NLP_MODEL_PATH); trainModel(TRAINING_DATA_DIR, LOG_DIR, ref docWordDicList, ref dictionary, dicSize, ref trainingAnswer, ref wordIDFDictionary, stopWordTable, nlpAdapter ); #if KNN_MODE KNN knn = new KNN(); knn.set(dicSize, docWordDicList.Count()); knn.initial(docWordDicList, dictionary, trainingAnswer); knn.train(3, 20); knn.getAveDistance(); //knn.genLog(@"D:\work\KPMG\learning\classification\project1_0422\log"); List <KeyValuePair <int, int> > testAnswer = runKnnTest(knn, TEST_DATA_DIR, TEST_LOG_DIR, dictionary, wordIDFDictionary, stopWordTable, ref testFileNameList, nlpAdapter); #else Console.WriteLine("==> Starting get model..."); SVMAdapter svmAdapter = new SVMAdapter(); svm_model model = svmAdapter.getSVMModel(docWordDicList, dictionary, trainingAnswer, SVMAdapter.SVM_C_DEFAULT, SVMAdapter.SVM_GAMMA_DEFAULT); Console.WriteLine("==> Starting SVM test..."); List <KeyValuePair <int, int> > testAnswer = runSVMTest(svmAdapter, TEST_DATA_DIR, TEST_LOG_DIR, dictionary, wordIDFDictionary, stopWordTable, ref testFileNameList, model, nlpAdapter); Console.WriteLine("==> Starting SVM test done!!"); #endif Console.WriteLine("==> Starting saving result..."); genStatistic(testAnswer, testFileNameList, LOG_DIR); }