示例#1
0
        // FROM trainer
        public QNModel(LogLikelihoodFunction monitor, double[] parameters)
            : base(null, monitor.PredLabels, monitor.OutcomeLabels)
        {
            int[][]   outcomePatterns = monitor.OutcomePatterns;
            Context[] cParameters     = new Context[monitor.PredLabels.Length];
            for (int ci = 0; ci < parameters.Length; ci++)
            {
                int[]    outcomePattern = outcomePatterns[ci];
                double[] alpha          = new double[outcomePattern.Length];
                for (int oi = 0; oi < outcomePattern.Length; oi++)
                {
                    alpha[oi] = parameters[ci + (outcomePattern[oi] * monitor.PredLabels.Length)];
                }
                cParameters[ci] = new Context(outcomePattern, alpha);
            }
            this.evalParams = new EvalParameters(cParameters, monitor.OutcomeLabels.Length);
            this.prior      = new UniformPrior();
            this.modelType  = ModelTypeEnum.MaxentQn;

            this.parameters = parameters;
        }
示例#2
0
        public virtual QNModel trainModel(DataIndexer indexer)
        {
            LogLikelihoodFunction objectiveFunction = generateFunction(indexer);

            this.dimension  = objectiveFunction.DomainDimension;
            this.updateInfo = new QNInfo(this, this.m, this.dimension);

            double[] initialPoint = objectiveFunction.InitialPoint;
            double   initialValue = objectiveFunction.valueAt(initialPoint);

            double[] initialGrad = objectiveFunction.gradientAt(initialPoint);

            LineSearchResult lsr = LineSearchResult.getInitialObject(initialValue, initialGrad, initialPoint, 0);

            int z = 0;

            while (true)
            {
                if (verbose)
                {
                    Console.Write(z++);
                }
                double[] direction = null;

                direction = computeDirection(objectiveFunction, lsr);
                lsr       = LineSearch.doLineSearch(objectiveFunction, direction, lsr, verbose);

                updateInfo.updateInfo(lsr);

                if (isConverged(lsr))
                {
                    break;
                }
            }
            return(new QNModel(objectiveFunction, lsr.NextPoint));
        }