StdDev() public static method

Computes the standard deviation of the given matrix
public static StdDev ( Matrix source, VectorType t = VectorType.Col ) : Vector
source Matrix
t VectorType Use column or row (default: Col)
return Vector
        /// <summary>Generate Linear Regression model based on a set of examples.</summary>
        /// <param name="x">The Matrix to process.</param>
        /// <param name="y">The Vector to process.</param>
        /// <returns>Model.</returns>
        public override IModel Generate(Matrix x, Vector y)
        {
            // create initial theta
            Vector theta = Vector.Ones(x.Cols + 1);
            Matrix copy = x.Copy();

            // normalise features
            for (int i = 0; i < copy.Cols; i++)
            {
                var j = FeatureNormalizer.FeatureScale(copy[i, VectorType.Col]);
                for (int k = 0; k < copy.Rows; k++)
                {
                    copy[k, i] = j[k];
                }
            }

            // add intercept term
            copy = copy.Insert(Vector.Ones(copy.Rows), 0, VectorType.Col);

            // run gradient descent
            var run = GradientDescent.Run(theta, copy, y, MaxIterations, LearningRate, new LinearCostFunction(),
                Lambda, new Regularization());

            // once converged create model and apply theta

            LinearRegressionModel model = new LinearRegressionModel(x.Mean(VectorType.Row), x.StdDev(VectorType.Row))
            {
                Descriptor = Descriptor,
                Theta = run.Item2
            };

            return model;
        }
示例#2
0
 /// <summary>
 /// Summarizes a given Matrix.
 /// </summary>
 /// <param name="matrix">Matrix to summarize.</param>
 /// <param name="byVector">Indicates which direction to summarize, default is <see cref="VectorType.Row"/> indicating top-down.</param>
 /// <returns></returns>
 public static Summary Summarize(Matrix matrix, VectorType byVector = VectorType.Row)
 {
     return new Summary()
     {
         Average = matrix.Mean(byVector),
         StandardDeviation = matrix.StdDev(byVector),
         Minimum = matrix.Min(byVector),
         Maximum = matrix.Max(byVector),
         Median = matrix.Median(byVector)
     };
 }
示例#3
0
 /// <summary>
 /// Computes the standard deviation of the given matrix
 /// </summary>
 /// <param name="source"></param>
 /// <param name="t">Return a Row or Column vector</param>
 /// <returns></returns>
 public static Vector StdDev(this Matrix source, VectorType t)
 {
     return(Matrix.StdDev(source, t));
 }