示例#1
0
        /// <summary>
        /// Get the map estimate.
        /// </summary>
        /// <param name="plmodel">Side model that contains the covariances of the
        /// pose-landmark pairs projected into the measurement space.
        /// Takes the form E = JSJ^T + R, where
        /// J is the measurement jacobian in both the pose and landmark directions,
        /// S is the joint covariance of the best estimate current pose and the landmark and
        /// R is the measurement noise.
        /// </param>
        /// <returns>Map estimate as points with certain covariance (gaussians).</returns>
        private unsafe IndexedMap GetMapModel(out IndexedMap plmodel)
        {
            int        length;
            Gaussian   component;
            IndexedMap mapmodel = new IndexedMap(3);

            plmodel = new IndexedMap(3);

            double *ptrmapmodel = (double *)ISAM2Lib.getmapmodel(handle, out length);
            double *ptrmapcov   = (double *)ISAM2Lib.getmapcovariances(handle, out length);
            double *ptrplcov    = (double *)ISAM2Lib.getplcovariances(handle, out length);

            // main model: mean and covariance
            for (int i = 0, k = 0, h = 0; i < length; i++, k += 3, h += 9)
            {
                double[]   mean       = new double[3];
                double[][] covariance = { new double[3], new double[3], new double[3] };

                mean[0] = ptrmapmodel[k + 0];
                mean[1] = ptrmapmodel[k + 1];
                mean[2] = ptrmapmodel[k + 2];

                covariance[0][0] = ptrmapcov[h + 0];
                covariance[0][1] = ptrmapcov[h + 1];
                covariance[0][2] = ptrmapcov[h + 2];
                covariance[1][0] = ptrmapcov[h + 3];
                covariance[1][1] = ptrmapcov[h + 4];
                covariance[1][2] = ptrmapcov[h + 5];
                covariance[2][0] = ptrmapcov[h + 6];
                covariance[2][1] = ptrmapcov[h + 7];
                covariance[2][2] = ptrmapcov[h + 8];

                component = new Gaussian(mean, covariance, 1.0);
                mapmodel.Add(component);
            }

            // side model: covariance projected into measurement space
            // includes pose uncertainty and measurement noise
            for (int i = 0, h = 0; i < length; i++, h += 9)
            {
                double[][] covariance = { new double[3], new double[3], new double[3] };

                covariance[0][0] = ptrplcov[h + 0];
                covariance[0][1] = ptrplcov[h + 1];
                covariance[0][2] = ptrplcov[h + 2];
                covariance[1][0] = ptrplcov[h + 3];
                covariance[1][1] = ptrplcov[h + 4];
                covariance[1][2] = ptrplcov[h + 5];
                covariance[2][0] = ptrplcov[h + 6];
                covariance[2][1] = ptrplcov[h + 7];
                covariance[2][2] = ptrplcov[h + 8];

                component = new Gaussian(new double[3], covariance, 1.0);
                plmodel.Add(component);
            }

            return(mapmodel);
        }
示例#2
0
        /// <summary>
        /// Find the data association labels from the new valid measurements and
        /// the internal previous map model using Mahalanobis association.
        /// </summary>
        /// <param name="measurements">New measurements.</param>
        /// <returns>Association labels.</returns>
        public List <int> FindLabels(List <MeasurementT> measurements)
        {
            if (DAAlgorithm == DataAssociationAlgorithm.Perfect)
            {
                if (!RefVehicle.HasDataAssociation)
                {
                    var exception = new InvalidOperationException("Tried to use perfect data association when none exists.");
                    exception.Data["module"] = "association";

                    throw exception;
                }

                return(RefVehicle.DataAssociation);
            }

            double[][] I             = 0.001.Multiply(Accord.Math.Matrix.Identity(3).ToArray());
            bool[]     keepcandidate = new bool[CandidateMapModel.Count];
            double[][] R;
            Gaussian[] q;
            Gaussian[] qcandidate;

            var        pose             = BestEstimate;
            IndexedMap visible          = new IndexedMap(3);
            List <int> visibleLandmarks = new List <int>();

            for (int i = 0; i < MapModel.Count; i++)
            {
                if (pose.Visible(MapModel[i].Mean))
                {
                    visible.Add(MapModel[i]);
                    visibleLandmarks.Add(i);
                }
            }

            double logPD      = Math.Log(pose.PD);
            double logclutter = Math.Log(pose.ClutterDensity);

            int n = visible.Count + CandidateMapModel.Count;
            int m = visible.Count + CandidateMapModel.Count + measurements.Count;

            // distances(i, k) = distance between landmark i and measurements k
            SparseMatrix distances = new SparseMatrix(n, n, double.NegativeInfinity);

            int candidatecount = CandidateMapModel.Count;

            // candidate count at the beggining of the process
            // this is so the measurements aren't compared with other measurements
            // (if one gets promoted to candidate, the next one could think it's similar to it
            // but that isn't sensible: one landmark -> hopefully one measurement)

            R          = pose.MeasurementCovariance;
            q          = new Gaussian[visible.Count];
            qcandidate = new Gaussian[CandidateMapModel.Count];

            for (int i = 0; i < q.Length; i++)
            {
                Gaussian component = visible[i];

                if (DAAlgorithm == DataAssociationAlgorithm.Mahalanobis)
                {
                    q[i] = new Gaussian(pose.Measurer.MeasurePerfect(pose.Pose, component.Mean).ToLinear(),
                                        plmodel[visibleLandmarks[i]].Covariance,
                                        1.0);
                }
                else
                {
                    q[i] = new Gaussian(component.Mean, I, 1.0);
                }
            }

            for (int i = 0; i < qcandidate.Length; i++)
            {
                Gaussian component = CandidateMapModel[i];

                if (DAAlgorithm == DataAssociationAlgorithm.Mahalanobis)
                {
                    // assume the covariance is zero, since there's nothing better to assume here
                    // note that this is more stringent on the unproven data, as they are given
                    // less leeway for noise than the already associated landmark
                    qcandidate[i] = new Gaussian(pose.Measurer.MeasurePerfect(pose.Pose, component.Mean).ToLinear(),
                                                 R, component.Weight);
                }
                else
                {
                    qcandidate[i] = new Gaussian(component.Mean, I, 1.0);
                }
            }

            Gaussian[] vlandmarks = q.Concatenate(qcandidate);

            for (int i = 0; i < n; i++)
            {
                for (int k = 0; k < measurements.Count; k++)
                {
                    double distance2;

                    if (DAAlgorithm == DataAssociationAlgorithm.Mahalanobis)
                    {
                        distance2 = vlandmarks[i].SquareMahalanobis(measurements[k].ToLinear());
                    }
                    else
                    {
                        distance2 = vlandmarks[i].Mean.SquareEuclidean(pose.Measurer.MeasureToMap(pose.Pose, measurements[k]));
                    }

                    if (distance2 < MatchThreshold * MatchThreshold)
                    {
                        distances[i, k] = logPD + Math.Log(vlandmarks[i].Multiplier) - 0.5 * distance2;
                    }
                }
            }

            for (int i = 0; i < vlandmarks.Length; i++)
            {
                distances[i, measurements.Count + i] = logPD;
            }

            for (int i = 0; i < measurements.Count; i++)
            {
                distances[vlandmarks.Length + i, i] = logclutter;
            }

            // fill the (Misdetection x Clutter) quadrant of the matrix with zeros (don't contribute)
            for (int i = vlandmarks.Length; i < m; i++)
            {
                for (int k = measurements.Count; k < m; k++)
                {
                    distances[i, k] = 0;
                }
            }

            int[] assignments = GraphCombinatorics.LinearAssignment(distances);

            // the assignment vector after removing all the clutter variables
            List <int> labels = new List <int>();

            for (int i = 0; i < measurements.Count; i++)
            {
                labels.Add(int.MinValue);
            }

            // proved landmark
            for (int i = 0; i < visible.Count; i++)
            {
                if (assignments[i] < measurements.Count)
                {
                    labels[assignments[i]] = visibleLandmarks[i];
                }
            }

            // candidate landmark
            for (int i = visible.Count; i < vlandmarks.Length; i++)
            {
                if (assignments[i] < measurements.Count)
                {
                    int k = i - visible.Count;

                    labels[assignments[i]] = -k - 1;
                    // negative labels are for candidates,
                    // note that zero is already occupied by the associated landmarks

                    // improve the estimated landmark by averaging with the new measurement
                    double w = CandidateMapModel[k].Weight;
                    CandidateMapModel[k] =
                        new Gaussian((CandidateMapModel[k].Mean.Multiply(w).Add(
                                          BestEstimate.Measurer.MeasureToMap(BestEstimate.Pose, measurements[assignments[i]]))).Divide(w + 1),
                                     I,
                                     w + 1);

                    // note the comparison between double and int
                    // since the weight is only used with integer values (and addition by one)
                    // there should never be any truncation error, at least while
                    // the number has less than 23/52 bits (for float/double);
                    // this amounts to 8388608 and 4.5e15 so it should be always ok.
                    // In fact, the gtsam key system fails before that
                    // (it uses three bytes for numbering, one for character)
                    if (CandidateMapModel[k].Weight >= NewLandmarkThreshold)
                    {
                        labels[assignments[i]] = NextLabel;
                    }
                    else
                    {
                        keepcandidate[k] = true;
                        // only keep candidates that haven't been added, but are still visible
                    }
                }
            }

            // else: unmatched measurements, add to candidates
            for (int i = 0; i < measurements.Count; i++)
            {
                if (labels[i] == int.MinValue)
                {
                    // if far from everything, generate a new candidate at the measured point
                    // note that the covariance is assumed zero, though that would throw an exception,
                    // as it doesn't have an inverse, so the identity is used instead (dummy value)
                    CandidateMapModel.Add(new Gaussian(BestEstimate.Measurer.MeasureToMap(BestEstimate.Pose, measurements[i]), I, 1));

                    if (NewLandmarkThreshold <= 1)
                    {
                        CandidateMapModel.RemoveAt(CandidateMapModel.Count - 1);
                        labels[i] = NextLabel;
                    }
                }
            }

            // anything that wasn't seen goes away, it was clutter
            for (int i = keepcandidate.Length - 1; i >= 0; i--)
            {
                if (!keepcandidate[i])
                {
                    CandidateMapModel.RemoveAt(i);
                }
            }

            return(labels);
        }