/// <summary> /// Read and scale inputs, create and train the Epsilon_SVR /// </summary> /// <param name="input_file_name">Training file path</param> /// <param name="kernel">Selected Kernel</param> /// <param name="probability">Specify if probability are needed</param> /// <param name="cache_size">Indicates the maximum memory that can use the program</param> public Epsilon_SVR(string input_file_name, Kernel kernel, double C, double epsilon, bool probability = true, double cache_size = 100) : this(ProblemHelper.ReadAndScaleProblem(input_file_name), kernel, C, epsilon, probability, cache_size) { }
/// <summary> /// Classification SVM /// Supports multi-class classification /// </summary> /// <param name="input_file_name">Path to the training data set file. Has respect the libsvm format</param> /// <param name="kernel">Selected Kernel</param> /// <param name="C">Cost parameter </param> /// <param name="cache_size">Indicates the maximum memory that can use the program</param> public C_SVC(string input_file_name, Kernel kernel, double C, double cache_size = 100) : this(ProblemHelper.ReadProblem(input_file_name), kernel, C, cache_size) { }
/// <summary> /// Default SVM /// </summary> /// <remarks>The class store svm parameters and create the model. /// This way, you can use it to predict</remarks> public SVM(string input_file_name, svm_parameter param) : this(ProblemHelper.ReadProblem(input_file_name), param) { }