/// <summary> Linearly interpolates between this tuple and tuple t1 and places the /// result into this tuple: this = (1-alpha)*this + alpha*t1. /// </summary> /// <param name="t1">the first tuple /// </param> /// <param name="alpha">the alpha interpolation parameter /// /// </param> public void interpolate(Tuple2f t1, float alpha) { float beta = 1 - alpha; x = beta * x + alpha * t1.x; y = beta * y + alpha * t1.y; }
/// <summary> Returns true if the L-infinite distance between this tuple and tuple t1 is /// less than or equal to the epsilon parameter, otherwise returns false. The L-infinite /// distance is equal to MAX[abs(x1-x2), abs(y1-y2)]. /// </summary> /// <param name="t1">the tuple to be compared to this tuple /// </param> /// <param name="epsilon">the threshold value /// </param> public virtual bool epsilonEquals(Tuple2f t1, float epsilon) { return((System.Math.Abs(t1.x - this.x) <= epsilon) && (System.Math.Abs(t1.y - this.y) <= epsilon)); }
/// <summary> Sets the value of this tuple to the scalar multiplication of itself and then /// adds tuple t1 (this = s*this + t1). /// </summary> /// <param name="s">the scalar value /// </param> /// <param name="t1">the tuple to be added /// </param> public void scaleAdd(float s, Tuple2f t1) { x = s * x + t1.x; y = s * y + t1.y; }
/// <summary> Sets the value of this tuple to the scalar multiplication of tuple t1.</summary> /// <param name="s">the scalar value /// </param> /// <param name="t1">the source tuple /// </param> public void scale(float s, Tuple2f t1) { x = s * t1.x; y = s * t1.y; }
/// <summary> Sets the value of this tuple to the vector difference of itself and tuple t1 (this = this - t1).</summary> /// <param name="t1">the other tuple /// </param> public void sub(Tuple2f t1) { x -= t1.x; y -= t1.y; }
/// <summary> Sets the value of this tuple to the vector sum of itself and tuple t1.</summary> /// <param name="t1"> the other tuple /// </param> public void add(Tuple2f t1) { x += t1.x; y += t1.y; }
/// <summary> Sets the value of this tuple to the value of the Tuple2f argument.</summary> /// <param name="t1">the tuple to be copied /// </param> public void set_Renamed(Tuple2f t1) { x = t1.x; y = t1.y; }
/// <summary> Sets the value of this tuple to the scalar multiplication of tuple t1 and then /// adds tuple t2 (this = s*t1 + t2). /// </summary> /// <param name="s">the scalar value /// </param> /// <param name="t1">the tuple to be multipled /// </param> /// <param name="t2">the tuple to be added /// </param> public void scaleAdd(float s, Tuple2f t1, Tuple2f t2) { x = s * t1.x + t2.x; y = s * t1.y + t2.y; }
/// <summary> Sets the value of this tuple to the negation of tuple t1. </summary> /// <param name="t1">the source vector /// </param> public void negate(Tuple2f t1) { x = - t1.x; y = - t1.y; }
/// <summary> Sets the value of this tuple to the vector difference of tuple t1 and t2 (this = t1 - t2).</summary> /// <param name="t1">the first tuple /// </param> /// <param name="t2">the second tuple /// </param> public void sub(Tuple2f t1, Tuple2f t2) { x = t1.x - t2.x; y = t1.y - t2.y; }
// Why no get(Tuple2f t), which exists in Tuple3f ? /// <summary> Sets the value of this tuple to the vector sum of tuples t1 and t2.</summary> /// <param name="t1">the first tuple /// </param> /// <param name="t2">the second tuple /// </param> public void add(Tuple2f t1, Tuple2f t2) { x = t1.x + t2.x; y = t1.y + t2.y; }
/// <summary> Clamps the minimum value of the tuple parameter to the min parameter /// and places the values into this tuple. /// </summary> /// <param name="min">the lowest value in the tuple after clamping /// </param> /// <parm> t the source tuple, which will not be modified </parm> public void clampMin(float min, Tuple2f t) { set_Renamed(t); clampMin(min); }
/// <summary> Sets each component of the tuple parameter to its absolute value and /// places the modified values into this tuple. /// </summary> /// <param name="t">the source tuple, which will not be modified /// </param> public void absolute(Tuple2f t) { set_Renamed(t); absolute(); }
/// <summary> Returns a hash number based on the data values in this object. /// Two different Tuple2f objects with identical data values /// (ie, returns true for equals(Tuple2f) ) will return the same hash number. /// Two vectors with different data members may return the same hash value, /// although this is not likely. /// </summary> //public override int GetHashCode() //{ // //UPGRADE_ISSUE: Method 'java.lang.Float.floatToIntBits' was not converted. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1000_javalangFloatfloatToIntBits_float'" // int xbits = Float.floatToIntBits(x); // //UPGRADE_ISSUE: Method 'java.lang.Float.floatToIntBits' was not converted. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1000_javalangFloatfloatToIntBits_float'" // int ybits = Float.floatToIntBits(y); // return xbits ^ ybits; //} /// <summary> Returns true if all of the data members of Tuple2f t1 are equal to the corresponding /// data members in this /// </summary> /// <param name="t1">the vector with which the comparison is made. /// </param> public bool equals(Tuple2f t1) { return t1 != null && x == t1.x && y == t1.y; }
/// <summary> Constructs and initializes a Vector2f from the specified Tuple2f.</summary> /// <param name="t1">the Tuple2f containing the initialization x y data /// </param> public Vector2f(Tuple2f t1):base(t1) { }
/// <summary> Returns true if the L-infinite distance between this tuple and tuple t1 is /// less than or equal to the epsilon parameter, otherwise returns false. The L-infinite /// distance is equal to MAX[abs(x1-x2), abs(y1-y2)]. /// </summary> /// <param name="t1">the tuple to be compared to this tuple /// </param> /// <param name="epsilon">the threshold value /// </param> public virtual bool epsilonEquals(Tuple2f t1, float epsilon) { return (System.Math.Abs(t1.x - this.x) <= epsilon) && (System.Math.Abs(t1.y - this.y) <= epsilon); }
/// <summary> Clamps the tuple parameter to the range [low, high] and places the values /// into this tuple. /// </summary> /// <param name="min">the lowest value in the tuple after clamping /// </param> /// <param name="max">the highest value in the tuple after clamping /// </param> /// <param name="t">the source tuple, which will not be modified /// </param> public void clamp(float min, float max, Tuple2f t) { set_Renamed(t); clamp(min, max); }
/// <summary> Sets the value of this tuple to the negation of tuple t1. </summary> /// <param name="t1">the source vector /// </param> public void negate(Tuple2f t1) { x = -t1.x; y = -t1.y; }
/// <summary> Clamps the maximum value of the tuple parameter to the max parameter and /// places the values into this tuple. /// </summary> /// <param name="max">the highest value in the tuple after clamping /// </param> /// <param name="t">the source tuple, which will not be modified /// </param> public void clampMax(float max, Tuple2f t) { set_Renamed(t); clampMax(max); }
/// <summary> Returns a hash number based on the data values in this object. /// Two different Tuple2f objects with identical data values /// (ie, returns true for equals(Tuple2f) ) will return the same hash number. /// Two vectors with different data members may return the same hash value, /// although this is not likely. /// </summary> //public override int GetHashCode() //{ // //UPGRADE_ISSUE: Method 'java.lang.Float.floatToIntBits' was not converted. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1000_javalangFloatfloatToIntBits_float'" // int xbits = Float.floatToIntBits(x); // //UPGRADE_ISSUE: Method 'java.lang.Float.floatToIntBits' was not converted. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1000_javalangFloatfloatToIntBits_float'" // int ybits = Float.floatToIntBits(y); // return xbits ^ ybits; //} /// <summary> Returns true if all of the data members of Tuple2f t1 are equal to the corresponding /// data members in this /// </summary> /// <param name="t1">the vector with which the comparison is made. /// </param> public bool equals(Tuple2f t1) { return(t1 != null && x == t1.x && y == t1.y); }
/// <summary> Linearly interpolates between tuples t1 and t2 and places the /// result into this tuple: this = (1-alpha)*t1 + alpha*t2. /// </summary> /// <param name="t1">the first tuple /// </param> /// <param name="t2">the second tuple /// </param> /// <param name="alpha">the alpha interpolation parameter /// </param> public void interpolate(Tuple2f t1, Tuple2f t2, float alpha) { set_Renamed(t1); interpolate(t2, alpha); }
/// <summary> Constructs and initializes a Tuple2f from the specified Tuple2f.</summary> /// <param name="t1">the Tuple2f containing the initialization x y data /// </param> public Tuple2f(Tuple2f t1) { x = t1.x; y = t1.y; }
/// <summary> Constructs and initializes a Vector2f from the specified Tuple2f.</summary> /// <param name="t1">the Tuple2f containing the initialization x y data /// </param> public Vector2f(Tuple2f t1) : base(t1) { }
/// <summary> Constructs and initializes a Point2d from the specified Tuple2f.</summary> /// <param name="t1">the Tuple2f containing the initialization x y data /// </param> public Point2d(Tuple2f t1):base(t1) { }
/// <summary> Constructs and initializes a Point2f from the specified Tuple2f.</summary> /// <param name="t1">the Tuple2f containing the initialization x y data /// </param> public Point2f(Tuple2f t1) : base(t1) { }