示例#1
0
文件: Tracing.cs 项目: octwanna/BoSSS
        /// <summary>
        /// ctor
        /// </summary>
        /// <param name="Title">
        /// a title under which the block appears in the logfile
        /// </param>
        /// <param name="f">
        /// tracing of function which contains the block
        /// </param>
        public BlockTrace(string Title, FuncTrace f)
        {
            if (!Tracer.InstrumentationSwitch)
            {
                return;
            }
            _name = Title;
            _f    = f;
            Tracer.Push_MethodCallRecord(_name);

            if (f.DoLogging)
            {
                m_Logger = f.m_Logger;
                m_Logger.Info("BLKENTER '" + _name);
            }
        }
示例#2
0
        /// <summary>
        /// Performs a time step
        /// </summary>
        /// <param name="dt">Time step size that equals -1, if no fixed time step is prescribed</param>
        public override double Perform(double dt)
        {
            using (var tr = new ilPSP.Tracing.FuncTrace()) {
                if (ABevolver[0].HistoryChangeRate.Count >= order - 1)
                {
                    // +++++++++++++++++++++++++++++++++++++++++++
                    // Standard case -- sufficiently large history
                    // +++++++++++++++++++++++++++++++++++++++++++
                    using (var bt = new BlockTrace("AB_LTS_standard", tr)) {
                        if (!reclusteredByGridRedist)
                        {
                            TryNewClustering(dt);
                        }

                        List <int> numberOfLocalTimeSteps = new List <int>();
                        double[]   clusterDts             = new double[CurrentClustering.NumberOfClusters];

                        // Set the number of sub steps (is calculated in every time step, regardless of whether a reclustering has been performed or not)
                        if (TimeStepConstraints != null)
                        {
                            //dt = CalculateTimeStep();
                            // If no dtFixed is set
                            if (TimeStepConstraints.First().dtMin != TimeStepConstraints.First().dtMax)
                            {
                                (clusterDts, numberOfLocalTimeSteps) = clusterer.GetPerCluster_dtHarmonicSum_SubSteps(CurrentClustering, Time, TimeStepConstraints, eps: 1.0e-1);
                                dt = clusterDts[0];
                            }
                            else        // dtFixed is set
                                        // Not nice, but working
                            {
                                dt = CalculateTimeStep();
                                numberOfLocalTimeSteps = CurrentClustering.SubStepsInitial;
                                for (int i = 0; i < numberOfLocalTimeSteps.Count; i++)
                                {
                                    clusterDts[i] = dt / numberOfLocalTimeSteps[i];
                                }
                            }
                        }

                        // Log time info
                        if (Logging)
                        {
                            this.log_clusterDts      = clusterDts;
                            this.log_clusterSubSteps = numberOfLocalTimeSteps.ToArray();
                            this.log_clusterElements = CurrentClustering.Clusters.Select(s => s.GlobalNoOfCells).ToArray();
                        }

                        if (ConsoleOutput)
                        {
                            for (int i = 0; i < numberOfLocalTimeSteps.Count; i++)
                            {
                                Console.WriteLine("Perform(dt):\t\t id={0} -> sub-steps={1}\telements={2}\tdt={3:0.#######E-00}", i, numberOfLocalTimeSteps[i], CurrentClustering.Clusters[i].GlobalNoOfCells, clusterDts[i]);
                                //Console.WriteLine("Perform(dt):\t\t id={0} -> sub-steps={1}\telements={2}\tdt={3}", i, numberOfLocalTimeSteps[i], CurrentClustering.Clusters[i].GlobalNoOfCells, clusterDts[i]);
                            }

                            if (numberOfLocalTimeSteps.Last() > (clusterer.MaxSubSteps + 1) && clusterer.Restrict)
                            {
                                throw new Exception(String.Format("Number of local time steps is larger than {0}! Restriction failed!", clusterer.MaxSubSteps));
                            }
                        }

                        double[,] CorrectionMatrix = new double[CurrentClustering.NumberOfClusters, CurrentClustering.NumberOfClusters];

                        // Test code
                        //double[] bla = new double[numberOfLocalTimeSteps.Count];
                        //for (int i = 0; i < bla.Length; i++) {
                        //    bla[i] = dt / numberOfLocalTimeSteps[i];
                        //    if (bla[i] != clusterDts[i]) {
                        //        throw new Exception("clusterDts wrong");
                        //    }
                        //}

                        // Saves the results at t_n
                        double[] y0 = new double[Mapping.LocalLength];
                        CurrentState.CopyTo(y0, 0);

                        double time0 = m_Time;
                        double time1 = m_Time + clusterDts[0];

                        // Evolves each sub-grid with its own time step (only one step)
                        // (The result is not written to m_DGCoordinates!)
                        for (int i = 0; i < ABevolver.Length; i++)
                        {
                            //localABevolve[i].completeBndFluxes.Clear();
                            //if (localABevolve[i].completeBndFluxes.Any(x => x != 0.0)) Console.WriteLine("Not all Bnd fluxes were used in correction step!!!");
                            ABevolver[i].Perform(clusterDts[i]);
                        }

                        // After evolving each cell update the time with dt_min
                        m_Time = m_Time + clusterDts.Last();

                        TimestepNumber subTimestep = new TimestepNumber(TimeInfo.TimeStepNumber - 1);

                        //if (saveToDBCallback != null) {
                        //    subTimestep = subTimestep.NextIteration();
                        //    saveToDBCallback(subTimestep, m_Time);
                        //}

                        // Saves the history of DG_Coordinates for each cluster
                        Queue <double[]>[] historyDGC_Q = new Queue <double[]> [CurrentClustering.NumberOfClusters];
                        for (int i = 0; i < historyDGC_Q.Length; i++)
                        {
                            historyDGC_Q[i] = ABevolver[i].HistoryDGCoordinate;
                        }

                        if (!adaptive)
                        {
                            // Saves DtHistory for each cluster
                            historyTime_Q = new Queue <double> [CurrentClustering.NumberOfClusters];
                            for (int i = 0; i < historyTime_Q.Length; i++)
                            {
                                historyTime_Q[i] = ABevolver[i].HistoryTime;
                            }
                        }

                        // Perform the local time steps
                        for (int localTS = 1; localTS < numberOfLocalTimeSteps.Last(); localTS++)
                        {
                            for (int id = 1; id < CurrentClustering.NumberOfClusters; id++)
                            {
                                //Evolve Condition: Is "ABevolve.Time" at "AB_LTS.Time"?
                                if ((ABevolver[id].Time - m_Time) < 1e-10)
                                {
                                    foreach (Chunk chunk in CurrentClustering.Clusters[id].VolumeMask)
                                    {
                                        foreach (int cell in chunk.Elements)
                                        {
                                            // f == each field
                                            // n == basis polynomial
                                            foreach (DGField f in Mapping.Fields)
                                            {
                                                for (int n = 0; n < f.Basis.GetLength(cell); n++)
                                                {
                                                    int coordinateIndex = Mapping.LocalUniqueCoordinateIndex(f, cell, n);
                                                    CurrentState[coordinateIndex] = historyDGC_Q[id].Last()[coordinateIndex];
                                                }
                                            }
                                        }
                                    }

                                    Dictionary <int, double> myDic = InterpolateBoundaryValues(historyDGC_Q, id, ABevolver[id].Time);

                                    foreach (KeyValuePair <int, double> kvp in myDic)
                                    {
                                        CurrentState[kvp.Key] = kvp.Value;
                                    }

                                    ABevolver[id].Perform(clusterDts[id]);

                                    m_Time = ABevolver.Min(s => s.Time);

                                    //if (saveToDBCallback != null) {
                                    //    subTimestep = subTimestep.NextIteration();
                                    //    saveToDBCallback(subTimestep, m_Time);
                                    //}
                                }

                                // Are we at an (intermediate-) syncronization levels?
                                // For conservatvity, we have to correct the values of the larger cell cluster
                                if (fluxCorrection)
                                {
                                    for (int idCoarse = 0; idCoarse < id; idCoarse++)
                                    {
                                        if (Math.Abs(ABevolver[id].Time - ABevolver[idCoarse].Time) < 1e-10 &&
                                            !(Math.Abs(ABevolver[idCoarse].Time - CorrectionMatrix[idCoarse, id]) < 1e-10))
                                        {
                                            if (fluxCorrection)
                                            {
                                                CorrectFluxes(idCoarse, id, historyDGC_Q);
                                            }
                                            CorrectionMatrix[idCoarse, id] = ABevolver[idCoarse].Time;
                                        }
                                    }
                                }
                            }
                        }

                        // Finalize step
                        // Use unmodified values in history of DGCoordinates (DGCoordinates could have been modified by
                        // InterpolateBoundaryValues, should be resetted afterwards)
                        CurrentState.Clear();
                        for (int id = 0; id < historyDGC_Q.Length; id++)
                        {
                            CurrentState.axpy <double[]>(historyDGC_Q[id].Last(), 1);
                        }

                        // Update time
                        m_Time = time0 + clusterDts[0];
                    }
                }
                else
                {
                    // +++++++++++++++++++++++++++++++++++++++++++++++++++++
                    // Startup - use Runge Rutta until history is sufficient
                    // +++++++++++++++++++++++++++++++++++++++++++++++++++++
                    using (var rkPhase = new BlockTrace("AB_LTS_Rkstartup", tr)) {
                        double[] currentChangeRate = new double[Mapping.LocalLength];
                        double[] upDGC             = new double[Mapping.LocalLength];

                        // Save time history
                        if (adaptive)
                        {
                            for (int i = 0; i < ABevolver.Length; i++)
                            {
                                double[] currentTime = new double[ABevolver[i].ABSubGrid.LocalNoOfCells];
                                for (int j = 0; j < currentTime.Length; j++)
                                {
                                    currentTime[j] = m_Time;
                                }
                                ABevolver[i].historyTimePerCell.Enqueue(currentTime);
                            }
                        }
                        else
                        {
                            if (ABevolver[0].HistoryTime.Count == 0)
                            {
                                for (int i = 0; i < ABevolver.Length; i++)
                                {
                                    ABevolver[i].HistoryTime.Enqueue(m_Time);
                                }
                            }
                        }

                        // Needed for the history
                        for (int i = 0; i < CurrentClustering.NumberOfClusters; i++)
                        {
                            double[] localCurrentChangeRate = new double[currentChangeRate.Length];
                            double[] edgeFlux = new double[gridData.iGeomEdges.Count * Mapping.Fields.Count];
                            ABevolver[i].ComputeChangeRate(localCurrentChangeRate, m_Time, 0, edgeFlux);
                            ABevolver[i].HistoryChangeRate.Enqueue(localCurrentChangeRate);
                            ABevolver[i].HistoryBoundaryFluxes.Enqueue(edgeFlux);
                        }

                        dt = RungeKuttaScheme.Perform(dt);

                        CurrentState.CopyTo(upDGC, 0);

                        // Saves ChangeRateHistory for AB LTS
                        // Only entries for the specific cluster
                        for (int i = 0; i < CurrentClustering.NumberOfClusters; i++)
                        {
                            ABevolver[i].HistoryDGCoordinate.Enqueue(OrderValuesByCluster(CurrentClustering.Clusters[i], upDGC));
                            if (!adaptive)
                            {
                                ABevolver[i].HistoryTime.Enqueue(RungeKuttaScheme.Time);
                            }
                        }

                        // RK is a global timeStep
                        // -> time update for all other timeStepper with rk.Time
                        m_Time = RungeKuttaScheme.Time;
                        foreach (ABevolve ab in ABevolver)
                        {
                            ab.ResetTime(m_Time, TimeInfo.TimeStepNumber);
                        }
                    }
                }
            }

            return(dt);
        }
示例#3
0
        /// <summary>
        /// see <see cref="ISparseSolverExt.Solve{Tdiag, Tunknowns, Trhs}(double,Tdiag,Tunknowns,Trhs)"/>;
        /// </summary>
        public SolverResult Solve <Tdiag, Tunknowns, Trhs>(double Scale, Tdiag d, Tunknowns x, Trhs rhs)
            where Tdiag : IList <double>
            where Tunknowns : IList <double>
            where Trhs : IList <double>
        {
            using (var tr = new ilPSP.Tracing.FuncTrace()) {
                SolverResult res = new SolverResult();

                Stopwatch st = new Stopwatch();
                st.Reset();
                st.Start();

                // modify diagonal
                // ===============

                // truly, we're not solving (diag(d) + Scale*M)*x = rhs,
                // but ((1.0/Scale)*diag(d) + M) = (1.0/Scale)*rhs

                double ooScale = 1.0 / Scale;
                int    N       = int.MinValue;
                if (d != null)
                {
                    int i0 = (int)m_Matrix.RowPartitioning.i0;

                    N = m_Matrix.RowPartitioning.LocalLength;
                    int Nd = d.Count;
                    if (d.Count > N || N % Nd != 0)
                    {
                        throw new ArgumentException("length must be equal to or a factor of the number of rows stored on this processor", "d");
                    }

                    int ix = 0;
                    for (int i = 0; i < N; i++)
                    {
                        double vadd = d[ix];
                        ix++;
                        if (ix >= Nd)
                        {
                            ix = 0;
                        }

                        if (vadd != 0.0)
                        {
                            int    iglob = i + i0;
                            double v     = m_Matrix.GetDiagonalElement(iglob);
                            v += ooScale * vadd;
                            m_Matrix.SetDiagonalElement(iglob, v);
                        }
                    }
                }

                // pass values to monkey
                // =====================
                bool       shallow, dummy2;
                VectorBase X   = Device.CreateVector(m_Matrix.ColPartition, x, out shallow);
                VectorBase Rhs = Device.CreateVector(m_Matrix.RowPartitioning, rhs, out dummy2);

                // scale rhs
                // =========

                if (ooScale != 1.0)
                {
                    Rhs.Lock();
                    Rhs.Scale(ooScale);
                    Rhs.Unlock();
                }

                // call Solver
                // ===========

                CallSolver(X, Rhs, ref res);

                if (res.Converged != true)
                {
                    Logger.Warn("Solver did NOT CONVERGE: " + res.ToString());
                }


                // return
                // ======

                if (d != null)
                {
                    int ix = 0;
                    int Nd = d.Count;

                    int i0 = (int)m_Matrix.RowPartitioning.i0;

                    for (int i = 0; i < N; i++)
                    {
                        double vadd = d[ix];
                        ix++;
                        if (ix >= Nd)
                        {
                            ix = 0;
                        }

                        if (vadd != 0.0)
                        {
                            int    iglob = i + i0;
                            double v     = m_Matrix.GetDiagonalElement(iglob);
                            v -= ooScale * vadd;
                            m_Matrix.SetDiagonalElement(iglob, v);
                        }
                    }
                }

                if (!shallow)
                {
                    X.GetValues(x, 0, 0, m_Matrix.ColPartition.LocalLength);
                }
                X.Dispose();
                Rhs.Dispose();

                st.Stop();
                res.RunTime = st.Elapsed;
                return(res);
            }
        }