public static void RunACORNN() { foreach (string dataset in GetDatasetFolds("datasets.txt")) { //---------------------------------------- Console.WriteLine("Data Table:" + dataset); //---------------------------------------- double avgQuality = 0; double avgSize = 0; for (_currentFold = 0; _currentFold < _folds; _currentFold++) { //---------------------------------------- Console.WriteLine("Fold:" + _currentFold.ToString()); //---------------------------------------- DataMining.Data.Dataset[] tables = LoadTrainingAndTestingData(dataset, _currentFold); DataMining.Data.Dataset trainingSet = tables[0]; DataMining.Data.Dataset testingSet = tables[1]; double quality = 0.0; double size = 0.0; AccuracyMeasure testMeasure = new AccuracyMeasure(); IActivationFunction activationFunction = new SigmoidActivationFunction(); //int hiddenUnitCount = trainingSet.Metadata.Attributes.Length * trainingSet.Metadata.Target.Length; int hiddenUnitCount = (trainingSet.Metadata.Attributes.Length + trainingSet.Metadata.Target.Length); try { stopWatch.Reset(); stopWatch.Start(); NeuralNetwork network = SingleTest.CreateNeuralNet_ACOR(trainingSet, hiddenUnitCount, 0.9, activationFunction); stopWatch.Stop(); quality = SingleTest.TestClassifier(network, testingSet, testMeasure); quality = Math.Round(quality * 100, 2); size = network.Size; avgQuality += quality; avgSize += size; //---------------------------------------- Console.WriteLine("ACOR-NN:" + dataset + "- Fold:" + _currentFold.ToString() + "=>" + testMeasure.ToString() + ":" + quality.ToString()); Console.WriteLine("---------------------------------------------------"); //---------------------------------------- } catch (Exception ex) { LogError(ex); break; } } avgSize /= _folds; SaveResults(dataset, "ACOR-NN", avgQuality.ToString(), avgSize.ToString(), stopWatch.ElapsedMilliseconds.ToString()); Console.WriteLine("---------------------------------------------------"); Console.WriteLine("---------------------------------------------------"); Console.WriteLine("---------------------------------------------------"); } }