void generate_support(Vector3f origin, float dx,
            int ni, int nj, int nk,
            DenseGrid3f supportGrid)
        {
            supportGrid.resize(ni, nj, nk);
            supportGrid.assign(1); // sentinel

            if (DebugPrint) System.Console.WriteLine("start");

            bool CHECKERBOARD = false;

            System.Console.WriteLine("Computing SDF");

            // compute unsigned SDF
            MeshSignedDistanceGrid sdf = new MeshSignedDistanceGrid(Mesh, CellSize) {
                ComputeSigns = true, ExactBandWidth = 3,
                /*,ComputeMode = MeshSignedDistanceGrid.ComputeModes.FullGrid*/ };
            sdf.CancelF = Cancelled;
            sdf.Compute();
            if (Cancelled())
                return;
            var distanceField = new DenseGridTrilinearImplicit(sdf.Grid, sdf.GridOrigin, sdf.CellSize);

            double angle = MathUtil.Clamp(OverhangAngleDeg, 0.01, 89.99);
            double cos_thresh = Math.Cos(angle * MathUtil.Deg2Rad);

            System.Console.WriteLine("Marking overhangs");

            // Compute narrow-band distances. For each triangle, we find its grid-coord-bbox,
            // and compute exact distances within that box. The intersection_count grid
            // is also filled in this computation
            double ddx = (double)dx;
            double ox = (double)origin[0], oy = (double)origin[1], oz = (double)origin[2];
            Vector3d va = Vector3d.Zero, vb = Vector3d.Zero, vc = Vector3d.Zero;
            foreach (int tid in Mesh.TriangleIndices()) {
                if (tid % 100 == 0 && Cancelled())
                    break;

                Mesh.GetTriVertices(tid, ref va, ref vb, ref vc);
                Vector3d normal = MathUtil.Normal(ref va, ref vb, ref vc);
                if (normal.Dot(-Vector3d.AxisY) < cos_thresh)
                    continue;

                // real ijk coordinates of va/vb/vc
                double fip = (va[0] - ox) / ddx, fjp = (va[1] - oy) / ddx, fkp = (va[2] - oz) / ddx;
                double fiq = (vb[0] - ox) / ddx, fjq = (vb[1] - oy) / ddx, fkq = (vb[2] - oz) / ddx;
                double fir = (vc[0] - ox) / ddx, fjr = (vc[1] - oy) / ddx, fkr = (vc[2] - oz) / ddx;

                // clamped integer bounding box of triangle plus exact-band
                int exact_band = 0;
                int i0 = MathUtil.Clamp(((int)MathUtil.Min(fip, fiq, fir)) - exact_band, 0, ni - 1);
                int i1 = MathUtil.Clamp(((int)MathUtil.Max(fip, fiq, fir)) + exact_band + 1, 0, ni - 1);
                int j0 = MathUtil.Clamp(((int)MathUtil.Min(fjp, fjq, fjr)) - exact_band, 0, nj - 1);
                int j1 = MathUtil.Clamp(((int)MathUtil.Max(fjp, fjq, fjr)) + exact_band + 1, 0, nj - 1);
                int k0 = MathUtil.Clamp(((int)MathUtil.Min(fkp, fkq, fkr)) - exact_band, 0, nk - 1);
                int k1 = MathUtil.Clamp(((int)MathUtil.Max(fkp, fkq, fkr)) + exact_band + 1, 0, nk - 1);

                // don't put into y=0 plane
                if (j0 == 0)
                    j0 = 1;

                // compute distance for each tri inside this bounding box
                // note: this can be very conservative if the triangle is large and on diagonal to grid axes
                for (int k = k0; k <= k1; ++k) {
                    for (int j = j0; j <= j1; ++j) {
                        for (int i = i0; i <= i1; ++i) {
                            Vector3d gx = new Vector3d((float)i * dx + origin[0], (float)j * dx + origin[1], (float)k * dx + origin[2]);
                            float d = (float)MeshSignedDistanceGrid.point_triangle_distance(ref gx, ref va, ref vb, ref vc);

                            // vertical checkerboard pattern (eg 'tips')
                            if (CHECKERBOARD) {
                                int zz = (k % 2 == 0) ? 1 : 0;
                                if (i % 2 == zz)
                                    continue;
                            }

                            if (d < dx / 2) {
                                if (j > 1) {
                                    supportGrid[i, j, k] = SUPPORT_TIP_TOP;
                                    supportGrid[i, j - 1, k] = SUPPORT_TIP_BASE;
                                } else {
                                    supportGrid[i, j, k] = SUPPORT_TIP_BASE;
                                }
                            }
                        }
                    }
                }
            }
            if (Cancelled())
                return;

            //process_version1(supportGrid, distanceField);
            //process_version2(supportGrid, distanceField);

            generate_graph(supportGrid, distanceField);
            //Util.WriteDebugMesh(MakeDebugGraphMesh(), "c:\\scratch\\__LAST_GRAPH_INIT.obj");

            postprocess_graph();
            //Util.WriteDebugMesh(MakeDebugGraphMesh(), "c:\\scratch\\__LAST_GRAPH_OPT.obj");
        }
示例#2
0
 public DenseGridTrilinearImplicit(MeshSignedDistanceGrid sdf_grid)
 {
     Grid       = sdf_grid.Grid;
     GridOrigin = sdf_grid.GridOrigin;
     CellSize   = sdf_grid.CellSize;
 }
        void generate_support(Vector3f origin, float dx,
                              int ni, int nj, int nk,
                              DenseGrid3f supportGrid)
        {
            supportGrid.resize(ni, nj, nk);
            supportGrid.assign(1); // sentinel

            bool CHECKERBOARD = false;

            // compute unsigned SDF
            int exact_band = 1;

            if (SubtractMesh && SubtractMeshOffset > 0)
            {
                int offset_band = (int)(SubtractMeshOffset / CellSize) + 1;
                exact_band = Math.Max(exact_band, offset_band);
            }
            sdf = new MeshSignedDistanceGrid(Mesh, CellSize)
            {
                ComputeSigns = true, ExactBandWidth = exact_band
            };
            sdf.CancelF = this.CancelF;
            sdf.Compute();
            if (CancelF())
            {
                return;
            }
            var distanceField = new DenseGridTrilinearImplicit(sdf.Grid, sdf.GridOrigin, sdf.CellSize);


            double angle      = MathUtil.Clamp(OverhangAngleDeg, 0.01, 89.99);
            double cos_thresh = Math.Cos(angle * MathUtil.Deg2Rad);

            // Compute narrow-band distances. For each triangle, we find its grid-coord-bbox,
            // and compute exact distances within that box. The intersection_count grid
            // is also filled in this computation
            double   ddx = (double)dx;
            double   ox = (double)origin[0], oy = (double)origin[1], oz = (double)origin[2];
            Vector3d va = Vector3d.Zero, vb = Vector3d.Zero, vc = Vector3d.Zero;

            foreach (int tid in Mesh.TriangleIndices())
            {
                if (tid % 100 == 0 && CancelF())
                {
                    break;
                }

                Mesh.GetTriVertices(tid, ref va, ref vb, ref vc);
                Vector3d normal = MathUtil.Normal(ref va, ref vb, ref vc);
                if (normal.Dot(-Vector3d.AxisY) < cos_thresh)
                {
                    continue;
                }

                // real ijk coordinates of va/vb/vc
                double fip = (va[0] - ox) / ddx, fjp = (va[1] - oy) / ddx, fkp = (va[2] - oz) / ddx;
                double fiq = (vb[0] - ox) / ddx, fjq = (vb[1] - oy) / ddx, fkq = (vb[2] - oz) / ddx;
                double fir = (vc[0] - ox) / ddx, fjr = (vc[1] - oy) / ddx, fkr = (vc[2] - oz) / ddx;

                // clamped integer bounding box of triangle plus exact-band
                int extra_band = 0;
                int i0         = MathUtil.Clamp(((int)MathUtil.Min(fip, fiq, fir)) - extra_band, 0, ni - 1);
                int i1         = MathUtil.Clamp(((int)MathUtil.Max(fip, fiq, fir)) + extra_band + 1, 0, ni - 1);
                int j0         = MathUtil.Clamp(((int)MathUtil.Min(fjp, fjq, fjr)) - extra_band, 0, nj - 1);
                int j1         = MathUtil.Clamp(((int)MathUtil.Max(fjp, fjq, fjr)) + extra_band + 1, 0, nj - 1);
                int k0         = MathUtil.Clamp(((int)MathUtil.Min(fkp, fkq, fkr)) - extra_band, 0, nk - 1);
                int k1         = MathUtil.Clamp(((int)MathUtil.Max(fkp, fkq, fkr)) + extra_band + 1, 0, nk - 1);

                // don't put into y=0 plane
                //if (j0 == 0)
                //    j0 = 1;

                // compute distance for each tri inside this bounding box
                // note: this can be very conservative if the triangle is large and on diagonal to grid axes
                for (int k = k0; k <= k1; ++k)
                {
                    for (int j = j0; j <= j1; ++j)
                    {
                        for (int i = i0; i <= i1; ++i)
                        {
                            Vector3d gx = new Vector3d((float)i * dx + origin[0], (float)j * dx + origin[1], (float)k * dx + origin[2]);
                            float    d  = (float)MeshSignedDistanceGrid.point_triangle_distance(ref gx, ref va, ref vb, ref vc);

                            // vertical checkerboard pattern (eg 'tips')
                            if (CHECKERBOARD)
                            {
                                int zz = (k % 2 == 0) ? 1 : 0;
                                if (i % 2 == zz)
                                {
                                    continue;
                                }
                            }

                            if (d < dx / 2)
                            {
                                supportGrid[i, j, k] = SUPPORT_TIP_TOP;
                            }
                        }
                    }
                }
            }
            if (CancelF())
            {
                return;
            }

            fill_vertical_spans(supportGrid, distanceField);
            generate_mesh(supportGrid, distanceField);
        }