示例#1
0
    private double value;         // current value of max flow
  
    /**
     * Compute a maximum flow and minimum cut in the network {@code G}
     * from vertex {@code s} to vertex {@code t}.
     *
     * @param  G the flow network
     * @param  s the source vertex
     * @param  t the sink vertex
     * @throws IllegalArgumentException unless {@code 0 <= s < V}
     * @throws IllegalArgumentException unless {@code 0 <= t < V}
     * @throws IllegalArgumentException if {@code s == t}
     * @throws IllegalArgumentException if initial flow is infeasible
     */
    public FordFulkerson(FlowNetwork G, int s, int t) {
        V = G.V();
        validate(s);
        validate(t);
        if (s == t)               throw new IllegalArgumentException("Source equals sink");
        if (!isFeasible(G, s, t)) throw new IllegalArgumentException("Initial flow is infeasible");

        // while there exists an augmenting path, use it
        value = excess(G, t);
        while (hasAugmentingPath(G, s, t)) {

            // compute bottleneck capacity
            double bottle = Double.POSITIVE_INFINITY;
            for (int v = t; v != s; v = edgeTo[v].other(v)) {
                bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));
            }

            // augment flow
            for (int v = t; v != s; v = edgeTo[v].other(v)) {
                edgeTo[v].addResidualFlowTo(v, bottle); 
            }

            value += bottle;
        }

        // check optimality conditions
        assert check(G, s, t);
    }
示例#2
0
    /**
     * Unit tests the {@code FordFulkerson} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {

        // create flow network with V vertices and E edges
        int V = Integer.parseInt(args[0]);
        int E = Integer.parseInt(args[1]);
        int s = 0, t = V-1;
        FlowNetwork G = new FlowNetwork(V, E);
        StdOut.println(G);

        // compute maximum flow and minimum cut
        FordFulkerson maxflow = new FordFulkerson(G, s, t);
        StdOut.println("Max flow from " + s + " to " + t);
        for (int v = 0; v < G.V(); v++) {
            for (FlowEdge e : G.adj(v)) {
                if ((v == e.from()) && e.flow() > 0)
                    StdOut.println("   " + e);
            }
        }

        // print min-cut
        StdOut.print("Min cut: ");
        for (int v = 0; v < G.V(); v++) {
            if (maxflow.inCut(v)) StdOut.print(v + " ");
        }
        StdOut.println();

        StdOut.println("Max flow value = " +  maxflow.value());
    }
示例#3
0
    // check optimality conditions
    private boolean check(FlowNetwork G, int s, int t) {

        // check that flow is feasible
        if (!isFeasible(G, s, t)) {
            System.err.println("Flow is infeasible");
            return false;
        }

        // check that s is on the source side of min cut and that t is not on source side
        if (!inCut(s)) {
            System.err.println("source " + s + " is not on source side of min cut");
            return false;
        }
        if (inCut(t)) {
            System.err.println("sink " + t + " is on source side of min cut");
            return false;
        }

        // check that value of min cut = value of max flow
        double mincutValue = 0.0;
        for (int v = 0; v < G.V(); v++) {
            for (FlowEdge e : G.adj(v)) {
                if ((v == e.from()) && inCut(e.from()) && !inCut(e.to()))
                    mincutValue += e.capacity();
            }
        }

        if (Math.abs(mincutValue - value) > FLOATING_POINT_EPSILON) {
            System.err.println("Max flow value = " + value + ", min cut value = " + mincutValue);
            return false;
        }

        return true;
    }
示例#4
0
    // return excess flow at vertex v
    private boolean isFeasible(FlowNetwork G, int s, int t) {

        // check that capacity constraints are satisfied
        for (int v = 0; v < G.V(); v++) {
            for (FlowEdge e : G.adj(v)) {
                if (e.flow() < -FLOATING_POINT_EPSILON || e.flow() > e.capacity() + FLOATING_POINT_EPSILON) {
                    System.err.println("Edge does not satisfy capacity constraints: " + e);
                    return false;
                }
            }
        }

        // check that net flow into a vertex equals zero, except at source and sink
        if (Math.abs(value + excess(G, s)) > FLOATING_POINT_EPSILON) {
            System.err.println("Excess at source = " + excess(G, s));
            System.err.println("Max flow         = " + value);
            return false;
        }
        if (Math.abs(value - excess(G, t)) > FLOATING_POINT_EPSILON) {
            System.err.println("Excess at sink   = " + excess(G, t));
            System.err.println("Max flow         = " + value);
            return false;
        }
        for (int v = 0; v < G.V(); v++) {
            if (v == s || v == t) continue;
            else if (Math.abs(excess(G, v)) > FLOATING_POINT_EPSILON) {
                System.err.println("Net flow out of " + v + " doesn't equal zero");
                return false;
            }
        }
        return true;
    }
示例#5
0
    // is there an augmenting path? 
    // if so, upon termination edgeTo[] will contain a parent-link representation of such a path
    // this implementation finds a shortest augmenting path (fewest number of edges),
    // which performs well both in theory and in practice
    private boolean hasAugmentingPath(FlowNetwork G, int s, int t) {
        edgeTo = new FlowEdge[G.V()];
        marked = new boolean[G.V()];

        // breadth-first search
        Queue<Integer> queue = new Queue<Integer>();
        queue.enqueue(s);
        marked[s] = true;
        while (!queue.isEmpty() && !marked[t]) {
            int v = queue.dequeue();

            for (FlowEdge e : G.adj(v)) {
                int w = e.other(v);

                // if residual capacity from v to w
                if (e.residualCapacityTo(w) > 0) {
                    if (!marked[w]) {
                        edgeTo[w] = e;
                        marked[w] = true;
                        queue.enqueue(w);
                    }
                }
            }
        }

        // is there an augmenting path?
        return marked[t];
    }
示例#6
0
 // return excess flow at vertex v
 private double excess(FlowNetwork G, int v) {
     double excess = 0.0;
     for (FlowEdge e : G.adj(v)) {
         if (v == e.from()) excess -= e.flow();
         else               excess += e.flow();
     }
     return excess;
 }
示例#7
0
    /**
     * Checks optimality conditions.
     * 
     * @param G the edge-weighted graph
     * @return {@code true} if optimality conditions are fine
     */
    private boolean check(EdgeWeightedGraph G) {

        // compute min st-cut for all pairs s and t
        // shortcut: s must appear on one side of global mincut,
        // so it suffices to try all pairs s-v for some fixed s
        double value = Double.POSITIVE_INFINITY;
        for (int s = 0, t = 1; t < G.V(); t++) {
            FlowNetwork F = new FlowNetwork(G.V());
            for (Edge e : G.edges()) {
                int v = e.either(), w = e.other(v);
                F.addEdge(new FlowEdge(v, w, e.weight()));
                F.addEdge(new FlowEdge(w, v, e.weight()));
            }
            FordFulkerson maxflow = new FordFulkerson(F, s, t);
            value = Math.min(value, maxflow.value());
        }
        if (Math.abs(weight - value) > FLOATING_POINT_EPSILON) {
            System.err.println("Min cut weight = " + weight + " , max flow value = " + value);
            return false;
        }
        return true;
    }