public Result decodeRow(int rowNumber, BitArray row, int[] startGuardRange)
        {
            StringBuilder result = decodeRowStringBuffer;
            result.Length = 0;
            int endStart = decodeMiddle(row, startGuardRange, result);
            int[] endRange = decodeEnd(row, endStart);

            // Make sure there is a quiet zone at least as big as the end pattern after the barcode. The
            // spec might want more whitespace, but in practice this is the maximum we can count on.
            int end = endRange[1];
            int quietEnd = end + (end - endRange[0]);
            if (quietEnd >= row.getSize() || !row.isRange(end, quietEnd, false)) {
              throw new ReaderException();
            }

            String resultString = result.ToString();
            if (!checkChecksum(resultString)) {
              throw new ReaderException();
            }

            float left = (float) (startGuardRange[1] + startGuardRange[0]) / 2.0f;
            float right = (float) (endRange[1] + endRange[0]) / 2.0f;
            return new Result(resultString,
                null, // no natural byte representation for these barcodes
                new ResultPoint[]{
                    new GenericResultPoint(left, (float) rowNumber),
                    new GenericResultPoint(right, (float) rowNumber)},
                getBarcodeFormat());
        }
        //JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
        //ORIGINAL LINE: private static int[] findAsteriskPattern(com.google.zxing.common.BitArray row, int[] counters) throws com.google.zxing.NotFoundException
        private static int[] findAsteriskPattern(BitArray row, int[] counters)
        {
            int width = row.Size;
            int rowOffset = row.getNextSet(0);

            int counterPosition = 0;
            int patternStart = rowOffset;
            bool isWhite = false;
            int patternLength = counters.Length;

            for (int i = rowOffset; i < width; i++)
            {
              if (row.get(i) ^ isWhite)
              {
            counters[counterPosition]++;
              }
              else
              {
            if (counterPosition == patternLength - 1)
            {
              // Look for whitespace before start pattern, >= 50% of width of start pattern
              if (toNarrowWidePattern(counters) == ASTERISK_ENCODING && row.isRange(Math.Max(0, patternStart - ((i - patternStart) >> 1)), patternStart, false))
              {
                return new int[]{patternStart, i};
              }
              patternStart += counters[0] + counters[1];
              Array.Copy(counters, 2, counters, 0, patternLength - 2);
              counters[patternLength - 2] = 0;
              counters[patternLength - 1] = 0;
              counterPosition--;
            }
            else
            {
              counterPosition++;
            }
            counters[counterPosition] = 1;
            isWhite = !isWhite;
              }
            }
            throw NotFoundException.NotFoundInstance;
        }
 public static int[] findStartGuardPattern(BitArray row)
 {
     bool foundStart = false;
     int[] startRange = null;
     int nextStart = 0;
     while (!foundStart) {
       startRange = findGuardPattern(row, nextStart, false, START_END_PATTERN);
       int start = startRange[0];
       nextStart = startRange[1];
       // Make sure there is a quiet zone at least as big as the start pattern before the barcode. If
       // this check would run off the left edge of the image, do not accept this barcode, as it is
       // very likely to be a false positive.
       int quietStart = start - (nextStart - start);
       if (quietStart >= 0) {
         foundStart = row.isRange(quietStart, start, false);
       }
     }
     return startRange;
 }
      public override Result decodeRow(int rowNumber, BitArray row, System.Collections.Hashtable hints) {

        int[] startPatternInfo = findStartPattern(row);
        int startCode = startPatternInfo[2];
        int codeSet;
        switch (startCode) {
          case CODE_START_A:
            codeSet = CODE_CODE_A;
            break;
          case CODE_START_B:
            codeSet = CODE_CODE_B;
            break;
          case CODE_START_C:
            codeSet = CODE_CODE_C;
            break;
          default:
            throw new ReaderException();
        }

        bool done = false;
        bool isNextShifted = false;

        StringBuilder result = new StringBuilder();
        int lastStart = startPatternInfo[0];
        int nextStart = startPatternInfo[1];
        int[] counters = new int[6];

        int lastCode = 0;
        int code = 0;
        int checksumTotal = startCode;
        int multiplier = 0;
        bool lastCharacterWasPrintable = true;

        while (!done) {

          bool unshift = isNextShifted;
          isNextShifted = false;

          // Save off last code
          lastCode = code;

          // Decode another code from image
          code = decodeCode(row, counters, nextStart);

          // Remember whether the last code was printable or not (excluding CODE_STOP)
          if (code != CODE_STOP) {
            lastCharacterWasPrintable = true;
          }

          // Add to checksum computation (if not CODE_STOP of course)
          if (code != CODE_STOP) {
            multiplier++;
            checksumTotal += multiplier * code;
          }

          // Advance to where the next code will to start
          lastStart = nextStart;
          for (int i = 0; i < counters.Length; i++) {
            nextStart += counters[i];
          }

          // Take care of illegal start codes
          switch (code) {
            case CODE_START_A:
            case CODE_START_B:
            case CODE_START_C:
              throw new ReaderException();
          }

          switch (codeSet) {

            case CODE_CODE_A:
              if (code < 64) {
                result.Append((char) (' ' + code));
              } else if (code < 96) {
                result.Append((char) (code - 64));
              } else {
                // Don't let CODE_STOP, which always appears, affect whether whether we think the last code
                // was printable or not
                if (code != CODE_STOP) {
                  lastCharacterWasPrintable = false;
                }
                switch (code) {
                  case CODE_FNC_1:
                  case CODE_FNC_2:
                  case CODE_FNC_3:
                  case CODE_FNC_4_A:
                    // do nothing?
                    break;
                  case CODE_SHIFT:
                    isNextShifted = true;
                    codeSet = CODE_CODE_B;
                    break;
                  case CODE_CODE_B:
                    codeSet = CODE_CODE_B;
                    break;
                  case CODE_CODE_C:
                    codeSet = CODE_CODE_C;
                    break;
                  case CODE_STOP:
                    done = true;
                    break;
                }
              }
              break;
            case CODE_CODE_B:
              if (code < 96) {
                result.Append((char) (' ' + code));
              } else {
                if (code != CODE_STOP) {
                  lastCharacterWasPrintable = false;
                }
                switch (code) {
                  case CODE_FNC_1:
                  case CODE_FNC_2:
                  case CODE_FNC_3:
                  case CODE_FNC_4_B:
                    // do nothing?
                    break;
                  case CODE_SHIFT:
                    isNextShifted = true;
                    codeSet = CODE_CODE_C;
                    break;
                  case CODE_CODE_A:
                    codeSet = CODE_CODE_A;
                    break;
                  case CODE_CODE_C:
                    codeSet = CODE_CODE_C;
                    break;
                  case CODE_STOP:
                    done = true;
                    break;
                }
              }
              break;
            case CODE_CODE_C:
              if (code < 100) {
                if (code < 10) {
                  result.Append('0');
                }
                result.Append(code);
              } else {
                if (code != CODE_STOP) {
                  lastCharacterWasPrintable = false;
                }
                switch (code) {
                  case CODE_FNC_1:
                    // do nothing?
                    break;
                  case CODE_CODE_A:
                    codeSet = CODE_CODE_A;
                    break;
                  case CODE_CODE_B:
                    codeSet = CODE_CODE_B;
                    break;
                  case CODE_STOP:
                    done = true;
                    break;
                }
              }
              break;
          }

          // Unshift back to another code set if we were shifted
          if (unshift) {
            switch (codeSet) {
              case CODE_CODE_A:
                codeSet = CODE_CODE_C;
                break;
              case CODE_CODE_B:
                codeSet = CODE_CODE_A;
                break;
              case CODE_CODE_C:
                codeSet = CODE_CODE_B;
                break;
            }
          }

        }

        // Check for ample whitespice following pattern, but, to do this we first need to remember that we
        // fudged decoding CODE_STOP since it actually has 7 bars, not 6. There is a black bar left to read off.
        // Would be slightly better to properly read. Here we just skip it:
        while (row.get(nextStart)) {
          nextStart++;
        }
        if (!row.isRange(nextStart, Math.Min(row.getSize(), nextStart + (nextStart - lastStart) / 2), false)) {
          throw new ReaderException();
        }

        // Pull out from sum the value of the penultimate check code
        checksumTotal -= multiplier * lastCode;
        // lastCode is the checksum then:
        if (checksumTotal % 103 != lastCode) {
          throw new ReaderException();
        }

        // Need to pull out the check digits from string
        int resultLength = result.Length;
        // Only bother if, well, the result had at least one character, and if the checksum digit happened
        // to be a printable character. If it was just interpreted as a control code, nothing to remove
        if (resultLength > 0 && lastCharacterWasPrintable) {
          if (codeSet == CODE_CODE_C) {
              result.Remove(resultLength - 2, 2);
          } else {
              result.Remove(resultLength - 1, 1);
          }
        }

        String resultString = result.ToString();

        if (resultString.Length == 0) {
          // Almost surely a false positive
          throw new ReaderException();
        }

        float left = (float) (startPatternInfo[1] + startPatternInfo[0]) / 2.0f;
        float right = (float) (nextStart + lastStart) / 2.0f;
        return new Result(
            resultString,
            null,
            new ResultPoint[]{
                new GenericResultPoint(left, (float) rowNumber),
                new GenericResultPoint(right, (float) rowNumber)},
            BarcodeFormat.CODE_128);

      }
      private static int[] findStartPattern(BitArray row) {
        int width = row.getSize();
        int rowOffset = 0;
        while (rowOffset < width) {
          if (row.get(rowOffset)) {
            break;
          }
          rowOffset++;
        }

        int counterPosition = 0;
        int[] counters = new int[6];
        int patternStart = rowOffset;
        bool isWhite = false;
        int patternLength = counters.Length;

        for (int i = rowOffset; i < width; i++) {
          bool pixel = row.get(i);
          if ((!pixel && isWhite) || (pixel && !isWhite)) {
            counters[counterPosition]++;
          } else {
            if (counterPosition == patternLength - 1) {
              int bestVariance = MAX_AVG_VARIANCE;
              int bestMatch = -1;
              for (int startCode = CODE_START_A; startCode <= CODE_START_C; startCode++) {
                int variance = patternMatchVariance(counters, CODE_PATTERNS[startCode], MAX_INDIVIDUAL_VARIANCE);
                if (variance < bestVariance) {
                  bestVariance = variance;
                  bestMatch = startCode;
                }
              }
              if (bestMatch >= 0) {
                // Look for whitespace before start pattern, >= 50% of width of start pattern            
                if (row.isRange(Math.Max(0, patternStart - (i - patternStart) / 2), patternStart, false)) {
                  return new int[]{patternStart, i, bestMatch};
                }
              }
              patternStart += counters[0] + counters[1];
              for (int y = 2; y < patternLength; y++) {
                counters[y - 2] = counters[y];
              }
              counters[patternLength - 2] = 0;
              counters[patternLength - 1] = 0;
              counterPosition--;
            } else {
              counterPosition++;
            }
            counters[counterPosition] = 1;
            isWhite = !isWhite;
          }
        }
        throw new ReaderException();
      }
 //JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
 //ORIGINAL LINE: static int[] findStartGuardPattern(com.google.zxing.common.BitArray row) throws com.google.zxing.NotFoundException
 internal static int[] findStartGuardPattern(BitArray row)
 {
     bool foundStart = false;
     int[] startRange = null;
     int nextStart = 0;
     int[] counters = new int[START_END_PATTERN.Length];
     while (!foundStart)
     {
       //Arrays.fill(counters, 0, START_END_PATTERN.Length, 0);
       counters.Fill(0);
       startRange = findGuardPattern(row, nextStart, false, START_END_PATTERN, counters);
       int start = startRange[0];
       nextStart = startRange[1];
       // Make sure there is a quiet zone at least as big as the start pattern before the barcode.
       // If this check would run off the left edge of the image, do not accept this barcode,
       // as it is very likely to be a false positive.
       int quietStart = start - (nextStart - start);
       if (quietStart >= 0)
       {
     foundStart = row.isRange(quietStart, start, false);
       }
     }
     return startRange;
 }
        /// <summary>
        /// <p>Like <seealso cref="#decodeRow(int, BitArray, java.util.Map)"/>, but
        /// allows caller to inform method about where the UPC/EAN start pattern is
        /// found. This allows this to be computed once and reused across many implementations.</p>
        /// </summary>
        //JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
        //ORIGINAL LINE: public com.google.zxing.Result decodeRow(int rowNumber, com.google.zxing.common.BitArray row, int[] startGuardRange, java.util.Map<com.google.zxing.DecodeHintType,?> hints) throws com.google.zxing.NotFoundException, com.google.zxing.ChecksumException, com.google.zxing.FormatException
        public virtual Result decodeRow(int rowNumber, BitArray row, int[] startGuardRange, IDictionary<DecodeHintType, object> hints)
        {
            //ResultPointCallback resultPointCallback = hints == null ? null : (ResultPointCallback) hints[DecodeHintType.NEED_RESULT_POINT_CALLBACK];
            ResultPointCallback resultPointCallback = null;
            if (hints != null && hints.ContainsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK))
            {
            resultPointCallback = (ResultPointCallback)hints[DecodeHintType.NEED_RESULT_POINT_CALLBACK];
            }

            if (resultPointCallback != null)
            {
              resultPointCallback.foundPossibleResultPoint(new ResultPoint((startGuardRange[0] + startGuardRange[1]) / 2.0f, rowNumber));
            }

            StringBuilder result = decodeRowStringBuffer;
            result.Length = 0;
            int endStart = decodeMiddle(row, startGuardRange, result);

            if (resultPointCallback != null)
            {
              resultPointCallback.foundPossibleResultPoint(new ResultPoint(endStart, rowNumber));
            }

            int[] endRange = decodeEnd(row, endStart);

            if (resultPointCallback != null)
            {
              resultPointCallback.foundPossibleResultPoint(new ResultPoint((endRange[0] + endRange[1]) / 2.0f, rowNumber));
            }

            // Make sure there is a quiet zone at least as big as the end pattern after the barcode. The
            // spec might want more whitespace, but in practice this is the maximum we can count on.
            int end = endRange[1];
            int quietEnd = end + (end - endRange[0]);
            if (quietEnd >= row.Size || !row.isRange(end, quietEnd, false))
            {
              throw NotFoundException.NotFoundInstance;
            }

            string resultString = result.ToString();
            if (!checkChecksum(resultString))
            {
              throw ChecksumException.ChecksumInstance;
            }

            float left = (float)(startGuardRange[1] + startGuardRange[0]) / 2.0f;
            float right = (float)(endRange[1] + endRange[0]) / 2.0f;
            BarcodeFormat format = BarcodeFormat;
            Result decodeResult = new Result(resultString, null, new ResultPoint[]{new ResultPoint(left, (float) rowNumber), new ResultPoint(right, (float) rowNumber)}, format); // no natural byte representation for these barcodes

            try
            {
              Result extensionResult = extensionReader.decodeRow(rowNumber, row, endRange[1]);
              decodeResult.putMetadata(ResultMetadataType.UPC_EAN_EXTENSION, extensionResult.Text);
              decodeResult.putAllMetadata(extensionResult.ResultMetadata);
              decodeResult.addResultPoints(extensionResult.ResultPoints);
            }
            catch (ReaderException re)
            {
              // continue
            }

            if (format == BarcodeFormat.EAN_13 || format == BarcodeFormat.UPC_A)
            {
              string countryID = eanManSupport.lookupCountryIdentifier(resultString);
              if (countryID != null)
              {
            decodeResult.putMetadata(ResultMetadataType.POSSIBLE_COUNTRY, countryID);
              }
            }

            return decodeResult;
        }
          private static int[] findAsteriskPattern(BitArray row) {
            int width = row.getSize();
            int rowOffset = 0;
            while (rowOffset < width) {
              if (row.get(rowOffset)) {
                break;
              }
              rowOffset++;
            }

            int counterPosition = 0;
            int[] counters = new int[9];
            int patternStart = rowOffset;
            bool isWhite = false;
            int patternLength = counters.Length;

            for (int i = rowOffset; i < width; i++) {
              bool pixel = row.get(i);
              if ((!pixel && isWhite) || (pixel && !isWhite)) {
                counters[counterPosition]++;
              } else {
                if (counterPosition == patternLength - 1) {
                  try {
                    if (toNarrowWidePattern(counters) == ASTERISK_ENCODING) {
                      // Look for whitespace before start pattern, >= 50% of width of start pattern
                      if (row.isRange(Math.Max(0, patternStart - (i - patternStart) / 2), patternStart, false)) {
                        return new int[]{patternStart, i};
                      }
                    }
                  } catch (ReaderException re) {
                    // no match, continue
                  }
                  patternStart += counters[0] + counters[1];
                  for (int y = 2; y < patternLength; y++) {
                    counters[y - 2] = counters[y];
                  }
                  counters[patternLength - 2] = 0;
                  counters[patternLength - 1] = 0;
                  counterPosition--;
                } else {
                  counterPosition++;
                }
                counters[counterPosition] = 1;
                isWhite = !isWhite;
              }
            }
            throw new ReaderException();
          }