// Perform an RSA public key operation on input public byte[] DoPublic(byte[] input) { if (input.Length != this.keylen) throw new ArgumentException("input.Length does not match keylen"); if (ReferenceEquals(this.N, null)) throw new ArgumentException("no key set!"); BigInteger T = new BigInteger(input); if (T >= this.N) throw new ArgumentException("input exceeds modulus"); T = T.modPow(this.E, this.N); byte[] b = T.getBytes(); return pad_bytes(b, this.keylen); }
// Generate an RSA keypair // Popular exponents are 3, 17 and 65537; the bigger it is, the slower encryption becomes public void GenerateKeyPair(int exponent) { for (; ; ) { BigInteger E = exponent; Random rand = new Random(); int nbits = this.keylen * 8 / 2; // so that P * Q < N // Find primes P and Q with Q < P so that: // GCD (E, (P - 1) * (Q - 1)) == 1 BigInteger P = null; BigInteger Q = null; BigInteger Pmin1 = null; BigInteger Qmin1 = null; BigInteger H = null; BigInteger GCD = null; do { P = BigInteger.genPseudoPrime(nbits, 20, rand); Q = BigInteger.genPseudoPrime(nbits, 20, rand); if (P == Q) continue; if (P < Q) { BigInteger swap = P; P = Q; Q = swap; } Pmin1 = P - 1; Qmin1 = Q - 1; H = Pmin1 * Qmin1; GCD = H.gcd(E); } while (GCD != 1); // N = P * Q // D = E^-1 mod ((P - 1) * (Q - 1)) // DP = D mod (P - 1) // DQ = D mod (Q - 1) // QP = Q^-1 mod P this.N = P * Q; this.E = E; this.P = P; this.Q = Q; this.D = E.modInverse(H); this.DP = D.modPow(1, Pmin1); this.DQ = D.modPow(1, Qmin1); this.QP = Q.modInverse(P); // Check that this key actually works! // BigInteger.genPseudoPrime (rarely) returns a non-prime byte[] encrypt_me = new byte[this.keylen - 1]; RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider(); rng.GetBytes(encrypt_me); encrypt_me = pad_bytes(encrypt_me, this.keylen); // ensure msg < modulus byte[] encrypted = DoPublic(encrypt_me); byte[] decrypted = DoPrivate(encrypted); if (compare_bytes(encrypt_me, 0, decrypted, 0, this.keylen)) return; } }
//*********************************************************************** // Tests the correct implementation of the modulo exponential and // inverse modulo functions using RSA encryption and decryption. The two // pseudoprimes p and q are fixed, but the two RSA keys are generated // for each round of testing. //*********************************************************************** public static void RSATest2(int rounds) { Random rand = new Random(); byte[] val = new byte[64]; byte[] pseudoPrime1 = { (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A, (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C, (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3, (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41, (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56, (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE, (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41, (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA, (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF, (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D, (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3, }; byte[] pseudoPrime2 = { (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7, (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E, (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3, (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93, (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF, (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20, (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8, (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F, (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C, (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80, (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB, }; BigInteger bi_p = new BigInteger(pseudoPrime1); BigInteger bi_q = new BigInteger(pseudoPrime2); BigInteger bi_pq = (bi_p - 1) * (bi_q - 1); BigInteger bi_n = bi_p * bi_q; for (int count = 0; count < rounds; count++) { // generate private and public key BigInteger bi_e = bi_pq.genCoPrime(512, rand); BigInteger bi_d = bi_e.modInverse(bi_pq); Console.WriteLine("\ne =\n" + bi_e.ToString(10)); Console.WriteLine("\nd =\n" + bi_d.ToString(10)); Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n"); // generate data of random length int t1 = 0; while (t1 == 0) t1 = (int)(rand.NextDouble() * 65); bool done = false; while (!done) { for (int i = 0; i < 64; i++) { if (i < t1) val[i] = (byte)(rand.NextDouble() * 256); else val[i] = 0; if (val[i] != 0) done = true; } } while (val[0] == 0) val[0] = (byte)(rand.NextDouble() * 256); Console.Write("Round = " + count); // encrypt and decrypt data BigInteger bi_data = new BigInteger(val, t1); BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n); BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n); // compare if (bi_decrypted != bi_data) { Console.WriteLine("\nError at round " + count); Console.WriteLine(bi_data + "\n"); return; } Console.WriteLine(" <PASSED>."); } }
//*********************************************************************** // Tests the correct implementation of the modulo exponential function // using RSA encryption and decryption (using pre-computed encryption and // decryption keys). //*********************************************************************** public static void RSATest(int rounds) { Random rand = new Random(1); byte[] val = new byte[64]; // private and public key BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16); BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16); BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16); Console.WriteLine("e =\n" + bi_e.ToString(10)); Console.WriteLine("\nd =\n" + bi_d.ToString(10)); Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n"); for (int count = 0; count < rounds; count++) { // generate data of random length int t1 = 0; while (t1 == 0) t1 = (int)(rand.NextDouble() * 65); bool done = false; while (!done) { for (int i = 0; i < 64; i++) { if (i < t1) val[i] = (byte)(rand.NextDouble() * 256); else val[i] = 0; if (val[i] != 0) done = true; } } while (val[0] == 0) val[0] = (byte)(rand.NextDouble() * 256); Console.Write("Round = " + count); // encrypt and decrypt data BigInteger bi_data = new BigInteger(val, t1); BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n); BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n); // compare if (bi_decrypted != bi_data) { Console.WriteLine("\nError at round " + count); Console.WriteLine(bi_data + "\n"); return; } Console.WriteLine(" <PASSED>."); } }
//*********************************************************************** // Probabilistic prime test based on Solovay-Strassen (Euler Criterion) // // p is probably prime if for any a < p (a is not multiple of p), // a^((p-1)/2) mod p = J(a, p) // // where J is the Jacobi symbol. // // Otherwise, p is composite. // // Returns // ------- // True if "this" is a Euler pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // //*********************************************************************** public bool SolovayStrassenTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - 1; BigInteger p_sub1_shift = p_sub1 >> 1; Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; // calculate a^((p-1)/2) mod p BigInteger expResult = a.modPow(p_sub1_shift, thisVal); if (expResult == p_sub1) expResult = -1; // calculate Jacobi symbol BigInteger jacob = Jacobi(a, thisVal); //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10)); //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10)); // if they are different then it is not prime if (expResult != jacob) return false; } return true; }
//*********************************************************************** // Probabilistic prime test based on Rabin-Miller's // // for any p > 0 with p - 1 = 2^s * t // // p is probably prime (strong pseudoprime) if for any a < p, // 1) a^t mod p = 1 or // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 // // Otherwise, p is composite. // // Returns // ------- // True if "this" is a strong pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // //*********************************************************************** public bool RabinMillerTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; // calculate values of s and t BigInteger p_sub1 = thisVal - (new BigInteger(1)); int s = 0; for (int index = 0; index < p_sub1.dataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_sub1.data[index] & mask) != 0) { index = p_sub1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; BigInteger b = a.modPow(t, thisVal); /* Console.WriteLine("a = " + a.ToString(10)); Console.WriteLine("b = " + b.ToString(10)); Console.WriteLine("t = " + t.ToString(10)); Console.WriteLine("s = " + s); */ bool result = false; if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1 result = true; for (int j = 0; result == false && j < s; j++) { if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 { result = true; break; } b = (b * b) % thisVal; } if (result == false) return false; } return true; }
//*********************************************************************** // Probabilistic prime test based on Fermat's little theorem // // for any a < p (p does not divide a) if // a^(p-1) mod p != 1 then p is not prime. // // Otherwise, p is probably prime (pseudoprime to the chosen base). // // Returns // ------- // True if "this" is a pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // // Note - this method is fast but fails for Carmichael numbers except // when the randomly chosen base is a factor of the number. // //*********************************************************************** public bool FermatLittleTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - (new BigInteger(1)); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; // calculate a^(p-1) mod p BigInteger expResult = a.modPow(p_sub1, thisVal); int resultLen = expResult.dataLength; // is NOT prime is a^(p-1) mod p != 1 if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) { //Console.WriteLine("a = " + a.ToString()); return false; } } return true; }