internal int deflateSetDictionary(ZStream strm, byte[] dictionary, int dictLength) { int length = dictLength; int index = 0; if (dictionary == null || status != INIT_STATE) return Z_STREAM_ERROR; strm.adler = strm._adler.adler32(strm.adler, dictionary, 0, dictLength); if (length < MIN_MATCH) return Z_OK; if (length > w_size - MIN_LOOKAHEAD) { length = w_size - MIN_LOOKAHEAD; index = dictLength - length; // use the tail of the dictionary } Array.Copy(dictionary, index, window, 0, length); strstart = length; block_start = length; // Insert all strings in the hash table (except for the last two bytes). // s->lookahead stays null, so s->ins_h will be recomputed at the next // call of fill_window. ins_h = window[0] & 0xff; ins_h = (((ins_h) << hash_shift) ^ (window[1] & 0xff)) & hash_mask; for (int n = 0; n <= length - MIN_MATCH; n++) { ins_h = (((ins_h) << hash_shift) ^ (window[(n) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; prev[n & w_mask] = head[ins_h]; head[ins_h] = (short) n; } return Z_OK; }
internal int deflate(ZStream strm, int flush) { int old_flush; if (flush > Z_FINISH || flush < 0) { return Z_STREAM_ERROR; } if (strm.next_out == null || (strm.next_in == null && strm.avail_in != 0) || (status == FINISH_STATE && flush != Z_FINISH)) { strm.msg = z_errmsg[Z_NEED_DICT - (Z_STREAM_ERROR)]; return Z_STREAM_ERROR; } if (strm.avail_out == 0) { strm.msg = z_errmsg[Z_NEED_DICT - (Z_BUF_ERROR)]; return Z_BUF_ERROR; } this.strm = strm; // just in case old_flush = last_flush; last_flush = flush; // Write the zlib header if (status == INIT_STATE) { int header = (Z_DEFLATED + ((w_bits - 8) << 4)) << 8; int level_flags = ((level - 1) & 0xff) >> 1; if (level_flags > 3) level_flags = 3; header |= (level_flags << 6); if (strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); status = BUSY_STATE; putShortMSB(header); // Save the adler32 of the preset dictionary: if (strstart != 0) { putShortMSB((int) (SupportClass.URShift(strm.adler, 16))); putShortMSB((int) (strm.adler & 0xffff)); } strm.adler = strm._adler.adler32(0, null, 0, 0); } // Flush as much pending output as possible if (pending != 0) { strm.flush_pending(); if (strm.avail_out == 0) { //System.out.println(" avail_out==0"); // Since avail_out is 0, deflate will be called again with // more output space, but possibly with both pending and // avail_in equal to zero. There won't be anything to do, // but this is not an error situation so make sure we // return OK instead of BUF_ERROR at next call of deflate: last_flush = - 1; return Z_OK; } // Make sure there is something to do and avoid duplicate consecutive // flushes. For repeated and useless calls with Z_FINISH, we keep // returning Z_STREAM_END instead of Z_BUFF_ERROR. } else if (strm.avail_in == 0 && flush <= old_flush && flush != Z_FINISH) { strm.msg = z_errmsg[Z_NEED_DICT - (Z_BUF_ERROR)]; return Z_BUF_ERROR; } // User must not provide more input after the first FINISH: if (status == FINISH_STATE && strm.avail_in != 0) { strm.msg = z_errmsg[Z_NEED_DICT - (Z_BUF_ERROR)]; return Z_BUF_ERROR; } // Start a new block or continue the current one. if (strm.avail_in != 0 || lookahead != 0 || (flush != Z_NO_FLUSH && status != FINISH_STATE)) { int bstate = - 1; switch (config_table[level].func) { case STORED: bstate = deflate_stored(flush); break; case FAST: bstate = deflate_fast(flush); break; case SLOW: bstate = deflate_slow(flush); break; default: break; } if (bstate == FinishStarted || bstate == FinishDone) { status = FINISH_STATE; } if (bstate == NeedMore || bstate == FinishStarted) { if (strm.avail_out == 0) { last_flush = - 1; // avoid BUF_ERROR next call, see above } return Z_OK; // If flush != Z_NO_FLUSH && avail_out == 0, the next call // of deflate should use the same flush parameter to make sure // that the flush is complete. So we don't have to output an // empty block here, this will be done at next call. This also // ensures that for a very small output buffer, we emit at most // one empty block. } if (bstate == BlockDone) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(); } else { // FULL_FLUSH or SYNC_FLUSH _tr_stored_block(0, 0, false); // For a full flush, this empty block will be recognized // as a special marker by inflate_sync(). if (flush == Z_FULL_FLUSH) { //state.head[s.hash_size-1]=0; for (int i = 0; i < hash_size; i++) // forget history head[i] = 0; } } strm.flush_pending(); if (strm.avail_out == 0) { last_flush = - 1; // avoid BUF_ERROR at next call, see above return Z_OK; } } } if (flush != Z_FINISH) return Z_OK; if (noheader != 0) return Z_STREAM_END; // Write the zlib trailer (adler32) putShortMSB((int) (SupportClass.URShift(strm.adler, 16))); putShortMSB((int) (strm.adler & 0xffff)); strm.flush_pending(); // If avail_out is zero, the application will call deflate again // to flush the rest. noheader = - 1; // write the trailer only once! return pending != 0?Z_OK:Z_STREAM_END; }
internal int deflateReset(ZStream strm) { strm.total_in = strm.total_out = 0; strm.msg = null; // strm.data_type = Z_UNKNOWN; pending = 0; pending_out = 0; if (noheader < 0) { noheader = 0; // was set to -1 by deflate(..., Z_FINISH); } status = (noheader != 0)?BUSY_STATE:INIT_STATE; strm.adler = strm._adler.adler32(0, null, 0, 0); last_flush = Z_NO_FLUSH; tr_init(); lm_init(); return Z_OK; }
internal int deflateParams(ZStream strm, int _level, int _strategy) { int err = Z_OK; if (_level == Z_DEFAULT_COMPRESSION) { _level = 6; } if (_level < 0 || _level > 9 || _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) { return Z_STREAM_ERROR; } if (config_table[level].func != config_table[_level].func && strm.total_in != 0) { // Flush the last buffer: err = strm.deflate(Z_PARTIAL_FLUSH); } if (level != _level) { level = _level; max_lazy_match = config_table[level].max_lazy; good_match = config_table[level].good_length; nice_match = config_table[level].nice_length; max_chain_length = config_table[level].max_chain; } strategy = _strategy; return err; }
internal void reset(ZStream z, long[] c) { if (c != null) c[0] = check; if (mode == BTREE || mode == DTREE) { blens = null; } if (mode == CODES) { codes.free(z); } mode = TYPE; bitk = 0; bitb = 0; read = write = 0; if (checkfn != null) z.adler = check = z._adler.adler32(0L, null, 0, 0); }
internal int deflateInit2(ZStream strm, int level, int method, int windowBits, int memLevel, int strategy) { int noheader = 0; // byte[] my_version=ZLIB_VERSION; // // if (version == null || version[0] != my_version[0] // || stream_size != sizeof(z_stream)) { // return Z_VERSION_ERROR; // } strm.msg = null; if (level == Z_DEFAULT_COMPRESSION) level = 6; if (windowBits < 0) { // undocumented feature: suppress zlib header noheader = 1; windowBits = - windowBits; } if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { return Z_STREAM_ERROR; } strm.dstate = (Deflate) this; this.noheader = noheader; w_bits = windowBits; w_size = 1 << w_bits; w_mask = w_size - 1; hash_bits = memLevel + 7; hash_size = 1 << hash_bits; hash_mask = hash_size - 1; hash_shift = ((hash_bits + MIN_MATCH - 1) / MIN_MATCH); window = new byte[w_size * 2]; prev = new short[w_size]; head = new short[hash_size]; lit_bufsize = 1 << (memLevel + 6); // 16K elements by default // We overlay pending_buf and d_buf+l_buf. This works since the average // output size for (length,distance) codes is <= 24 bits. pending_buf = new byte[lit_bufsize * 4]; pending_buf_size = lit_bufsize * 4; d_buf = lit_bufsize; l_buf = (1 + 2) * lit_bufsize; this.level = level; //System.out.println("level="+level); this.strategy = strategy; this.method = (byte) method; return deflateReset(strm); }
internal static int inflate_trees_fixed(int[] bl, int[] bd, int[][] tl, int[][] td, ZStream z) { bl[0] = fixed_bl; bd[0] = fixed_bd; tl[0] = fixed_tl; td[0] = fixed_td; return Z_OK; }
internal void free(ZStream z) { // ZFREE(z, c); }
internal static int inflate_trees_bits(int[] c, int[] bb, int[] tb, int[] hp, ZStream z) { int r; int[] hn = new int[1]; // hufts used in space int[] v = new int[19]; // work area for huft_build r = huft_build(c, 0, 19, 19, null, null, tb, bb, hp, hn, v); if (r == Z_DATA_ERROR) { z.msg = "oversubscribed dynamic bit lengths tree"; } else if (r == Z_BUF_ERROR || bb[0] == 0) { z.msg = "incomplete dynamic bit lengths tree"; r = Z_DATA_ERROR; } return r; }
internal static int inflate_trees_dynamic(int nl, int nd, int[] c, int[] bl, int[] bd, int[] tl, int[] td, int[] hp, ZStream z) { int r; int[] hn = new int[1]; // hufts used in space int[] v = new int[288]; // work area for huft_build // build literal/length tree r = huft_build(c, 0, nl, 257, cplens, cplext, tl, bl, hp, hn, v); if (r != Z_OK || bl[0] == 0) { if (r == Z_DATA_ERROR) { z.msg = "oversubscribed literal/length tree"; } else if (r != Z_MEM_ERROR) { z.msg = "incomplete literal/length tree"; r = Z_DATA_ERROR; } return r; } // build distance tree r = huft_build(c, nl, nd, 0, cpdist, cpdext, td, bd, hp, hn, v); if (r != Z_OK || (bd[0] == 0 && nl > 257)) { if (r == Z_DATA_ERROR) { z.msg = "oversubscribed distance tree"; } else if (r == Z_BUF_ERROR) { z.msg = "incomplete distance tree"; r = Z_DATA_ERROR; } else if (r != Z_MEM_ERROR) { z.msg = "empty distance tree with lengths"; r = Z_DATA_ERROR; } return r; } return Z_OK; }
// copy as much as possible from the sliding window to the output area internal int inflate_flush(ZStream z, int r) { int n; int p; int q; // local copies of source and destination pointers p = z.next_out_index; q = read; // compute number of bytes to copy as far as end of window n = (int) ((q <= write?write:end) - q); if (n > z.avail_out) n = z.avail_out; if (n != 0 && r == Z_BUF_ERROR) r = Z_OK; // update counters z.avail_out -= n; z.total_out += n; // update check information if (checkfn != null) z.adler = check = z._adler.adler32(check, window, q, n); // copy as far as end of window Array.Copy(window, q, z.next_out, p, n); p += n; q += n; // see if more to copy at beginning of window if (q == end) { // wrap pointers q = 0; if (write == end) write = 0; // compute bytes to copy n = write - q; if (n > z.avail_out) n = z.avail_out; if (n != 0 && r == Z_BUF_ERROR) r = Z_OK; // update counters z.avail_out -= n; z.total_out += n; // update check information if (checkfn != null) z.adler = check = z._adler.adler32(check, window, q, n); // copy Array.Copy(window, q, z.next_out, p, n); p += n; q += n; } // update pointers z.next_out_index = p; read = q; // done return r; }
internal void free(ZStream z) { reset(z, null); window = null; hufts = null; //ZFREE(z, s); }
internal int proc(ZStream z, int r) { int t; // temporary storage int b; // bit buffer int k; // bits in bit buffer int p; // input data pointer int n; // bytes available there int q; // output window write pointer int m; // bytes to end of window or read pointer // copy input/output information to locals (UPDATE macro restores) { p = z.next_in_index; n = z.avail_in; b = bitb; k = bitk; } { q = write; m = (int) (q < read?read - q - 1:end - q); } // process input based on current state while (true) { switch (mode) { case TYPE: while (k < (3)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } t = (int) (b & 7); last = t & 1; switch (SupportClass.URShift(t, 1)) { case 0: // stored { b = SupportClass.URShift(b, (3)); k -= (3); } t = k & 7; // go to byte boundary { b = SupportClass.URShift(b, (t)); k -= (t); } mode = LENS; // get length of stored block break; case 1: // fixed { int[] bl = new int[1]; int[] bd = new int[1]; int[][] tl = new int[1][]; int[][] td = new int[1][]; InfTree.inflate_trees_fixed(bl, bd, tl, td, z); codes = new InfCodes(bl[0], bd[0], tl[0], td[0], z); } { b = SupportClass.URShift(b, (3)); k -= (3); } mode = CODES; break; case 2: // dynamic { b = SupportClass.URShift(b, (3)); k -= (3); } mode = TABLE; break; case 3: // illegal { b = SupportClass.URShift(b, (3)); k -= (3); } mode = BAD; z.msg = "invalid block type"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } break; case LENS: while (k < (32)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } if (((SupportClass.URShift((~ b), 16)) & 0xffff) != (b & 0xffff)) { mode = BAD; z.msg = "invalid stored block lengths"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } left = (b & 0xffff); b = k = 0; // dump bits mode = left != 0?STORED:(last != 0?DRY:TYPE); break; case STORED: if (n == 0) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } if (m == 0) { if (q == end && read != 0) { q = 0; m = (int) (q < read?read - q - 1:end - q); } if (m == 0) { write = q; r = inflate_flush(z, r); q = write; m = (int) (q < read?read - q - 1:end - q); if (q == end && read != 0) { q = 0; m = (int) (q < read?read - q - 1:end - q); } if (m == 0) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } } } r = Z_OK; t = left; if (t > n) t = n; if (t > m) t = m; Array.Copy(z.next_in, p, window, q, t); p += t; n -= t; q += t; m -= t; if ((left -= t) != 0) break; mode = last != 0?DRY:TYPE; break; case TABLE: while (k < (14)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } table = t = (b & 0x3fff); if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) { mode = BAD; z.msg = "too many length or distance symbols"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); blens = new int[t]; { b = SupportClass.URShift(b, (14)); k -= (14); } index = 0; mode = BTREE; goto case BTREE; case BTREE: while (index < 4 + (SupportClass.URShift(table, 10))) { while (k < (3)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } blens[border[index++]] = b & 7; { b = SupportClass.URShift(b, (3)); k -= (3); } } while (index < 19) { blens[border[index++]] = 0; } bb[0] = 7; t = InfTree.inflate_trees_bits(blens, bb, tb, hufts, z); if (t != Z_OK) { r = t; if (r == Z_DATA_ERROR) { blens = null; mode = BAD; } bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } index = 0; mode = DTREE; goto case DTREE; case DTREE: while (true) { t = table; if (!(index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))) { break; } int i, j, c; t = bb[0]; while (k < (t)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } if (tb[0] == - 1) { //System.err.println("null..."); } t = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 1]; c = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 2]; if (c < 16) { b = SupportClass.URShift(b, (t)); k -= (t); blens[index++] = c; } else { // c == 16..18 i = c == 18?7:c - 14; j = c == 18?11:3; while (k < (t + i)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } b = SupportClass.URShift(b, (t)); k -= (t); j += (b & inflate_mask[i]); b = SupportClass.URShift(b, (i)); k -= (i); i = index; t = table; if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (c == 16 && i < 1)) { blens = null; mode = BAD; z.msg = "invalid bit length repeat"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } c = c == 16?blens[i - 1]:0; do { blens[i++] = c; } while (--j != 0); index = i; } } tb[0] = - 1; { int[] bl = new int[1]; int[] bd = new int[1]; int[] tl = new int[1]; int[] td = new int[1]; bl[0] = 9; // must be <= 9 for lookahead assumptions bd[0] = 6; // must be <= 9 for lookahead assumptions t = table; t = InfTree.inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), blens, bl, bd, tl, td, hufts, z); if (t != Z_OK) { if (t == Z_DATA_ERROR) { blens = null; mode = BAD; } r = t; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } codes = new InfCodes(bl[0], bd[0], hufts, tl[0], hufts, td[0], z); } blens = null; mode = CODES; goto case CODES; case CODES: bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; if ((r = codes.proc(this, z, r)) != Z_STREAM_END) { return inflate_flush(z, r); } r = Z_OK; codes.free(z); p = z.next_in_index; n = z.avail_in; b = bitb; k = bitk; q = write; m = (int) (q < read?read - q - 1:end - q); if (last == 0) { mode = TYPE; break; } mode = DRY; goto case DRY; case DRY: write = q; r = inflate_flush(z, r); q = write; m = (int) (q < read?read - q - 1:end - q); if (read != write) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } mode = DONE; goto case DONE; case DONE: r = Z_STREAM_END; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); case BAD: r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); default: r = Z_STREAM_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } } }
internal InfCodes(int bl, int bd, int[] tl, int[] td, ZStream z) { mode = START; lbits = (byte) bl; dbits = (byte) bd; ltree = tl; ltree_index = 0; dtree = td; dtree_index = 0; }
internal int deflateInit(ZStream strm, int level, int bits) { return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); }
internal int proc(InfBlocks s, ZStream z, int r) { int j; // temporary storage //int[] t; // temporary pointer int tindex; // temporary pointer int e; // extra bits or operation int b = 0; // bit buffer int k = 0; // bits in bit buffer int p = 0; // input data pointer int n; // bytes available there int q; // output window write pointer int m; // bytes to end of window or read pointer int f; // pointer to copy strings from // copy input/output information to locals (UPDATE macro restores) p = z.next_in_index; n = z.avail_in; b = s.bitb; k = s.bitk; q = s.write; m = q < s.read?s.read - q - 1:s.end - q; // process input and output based on current state while (true) { switch (mode) { // waiting for "i:"=input, "o:"=output, "x:"=nothing case START: // x: set up for LEN if (m >= 258 && n >= 10) { s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; r = inflate_fast(lbits, dbits, ltree, ltree_index, dtree, dtree_index, s, z); p = z.next_in_index; n = z.avail_in; b = s.bitb; k = s.bitk; q = s.write; m = q < s.read?s.read - q - 1:s.end - q; if (r != Z_OK) { mode = r == Z_STREAM_END?WASH:BADCODE; break; } } need = lbits; tree = ltree; tree_index = ltree_index; mode = LEN; goto case LEN; case LEN: // i: get length/literal/eob next j = need; while (k < (j)) { if (n != 0) r = Z_OK; else { s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); } n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } tindex = (tree_index + (b & inflate_mask[j])) * 3; b = SupportClass.URShift(b, (tree[tindex + 1])); k -= (tree[tindex + 1]); e = tree[tindex]; if (e == 0) { // literal lit = tree[tindex + 2]; mode = LIT; break; } if ((e & 16) != 0) { // length get_Renamed = e & 15; len = tree[tindex + 2]; mode = LENEXT; break; } if ((e & 64) == 0) { // next table need = e; tree_index = tindex / 3 + tree[tindex + 2]; break; } if ((e & 32) != 0) { // end of block mode = WASH; break; } mode = BADCODE; // invalid code z.msg = "invalid literal/length code"; r = Z_DATA_ERROR; s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); case LENEXT: // i: getting length extra (have base) j = get_Renamed; while (k < (j)) { if (n != 0) r = Z_OK; else { s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); } n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } len += (b & inflate_mask[j]); b >>= j; k -= j; need = dbits; tree = dtree; tree_index = dtree_index; mode = DIST; goto case DIST; case DIST: // i: get distance next j = need; while (k < (j)) { if (n != 0) r = Z_OK; else { s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); } n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } tindex = (tree_index + (b & inflate_mask[j])) * 3; b >>= tree[tindex + 1]; k -= tree[tindex + 1]; e = (tree[tindex]); if ((e & 16) != 0) { // distance get_Renamed = e & 15; dist = tree[tindex + 2]; mode = DISTEXT; break; } if ((e & 64) == 0) { // next table need = e; tree_index = tindex / 3 + tree[tindex + 2]; break; } mode = BADCODE; // invalid code z.msg = "invalid distance code"; r = Z_DATA_ERROR; s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); case DISTEXT: // i: getting distance extra j = get_Renamed; while (k < (j)) { if (n != 0) r = Z_OK; else { s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); } n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } dist += (b & inflate_mask[j]); b >>= j; k -= j; mode = COPY; goto case COPY; case COPY: // o: copying bytes in window, waiting for space f = q - dist; while (f < 0) { // modulo window size-"while" instead f += s.end; // of "if" handles invalid distances } while (len != 0) { if (m == 0) { if (q == s.end && s.read != 0) { q = 0; m = q < s.read?s.read - q - 1:s.end - q; } if (m == 0) { s.write = q; r = s.inflate_flush(z, r); q = s.write; m = q < s.read?s.read - q - 1:s.end - q; if (q == s.end && s.read != 0) { q = 0; m = q < s.read?s.read - q - 1:s.end - q; } if (m == 0) { s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); } } } s.window[q++] = s.window[f++]; m--; if (f == s.end) f = 0; len--; } mode = START; break; case LIT: // o: got literal, waiting for output space if (m == 0) { if (q == s.end && s.read != 0) { q = 0; m = q < s.read?s.read - q - 1:s.end - q; } if (m == 0) { s.write = q; r = s.inflate_flush(z, r); q = s.write; m = q < s.read?s.read - q - 1:s.end - q; if (q == s.end && s.read != 0) { q = 0; m = q < s.read?s.read - q - 1:s.end - q; } if (m == 0) { s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); } } } r = Z_OK; s.window[q++] = (byte) lit; m--; mode = START; break; case WASH: // o: got eob, possibly more output if (k > 7) { // return unused byte, if any k -= 8; n++; p--; // can always return one } s.write = q; r = s.inflate_flush(z, r); q = s.write; m = q < s.read?s.read - q - 1:s.end - q; if (s.read != s.write) { s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); } mode = END; goto case END; case END: r = Z_STREAM_END; s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); case BADCODE: // x: got error r = Z_DATA_ERROR; s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); default: r = Z_STREAM_ERROR; s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return s.inflate_flush(z, r); } } }
internal int deflateInit(ZStream strm, int level) { return deflateInit(strm, level, MAX_WBITS); }
// Called with number of bytes left to write in window at least 258 // (the maximum string length) and number of input bytes available // at least ten. The ten bytes are six bytes for the longest length/ // distance pair plus four bytes for overloading the bit buffer. internal int inflate_fast(int bl, int bd, int[] tl, int tl_index, int[] td, int td_index, InfBlocks s, ZStream z) { int t; // temporary pointer int[] tp; // temporary pointer int tp_index; // temporary pointer int e; // extra bits or operation int b; // bit buffer int k; // bits in bit buffer int p; // input data pointer int n; // bytes available there int q; // output window write pointer int m; // bytes to end of window or read pointer int ml; // mask for literal/length tree int md; // mask for distance tree int c; // bytes to copy int d; // distance back to copy from int r; // copy source pointer // load input, output, bit values p = z.next_in_index; n = z.avail_in; b = s.bitb; k = s.bitk; q = s.write; m = q < s.read?s.read - q - 1:s.end - q; // initialize masks ml = inflate_mask[bl]; md = inflate_mask[bd]; // do until not enough input or output space for fast loop do { // assume called with m >= 258 && n >= 10 // get literal/length code while (k < (20)) { // max bits for literal/length code n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } t = b & ml; tp = tl; tp_index = tl_index; if ((e = tp[(tp_index + t) * 3]) == 0) { b >>= (tp[(tp_index + t) * 3 + 1]); k -= (tp[(tp_index + t) * 3 + 1]); s.window[q++] = (byte) tp[(tp_index + t) * 3 + 2]; m--; continue; } do { b >>= (tp[(tp_index + t) * 3 + 1]); k -= (tp[(tp_index + t) * 3 + 1]); if ((e & 16) != 0) { e &= 15; c = tp[(tp_index + t) * 3 + 2] + ((int) b & inflate_mask[e]); b >>= e; k -= e; // decode distance base of block to copy while (k < (15)) { // max bits for distance code n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } t = b & md; tp = td; tp_index = td_index; e = tp[(tp_index + t) * 3]; do { b >>= (tp[(tp_index + t) * 3 + 1]); k -= (tp[(tp_index + t) * 3 + 1]); if ((e & 16) != 0) { // get extra bits to add to distance base e &= 15; while (k < (e)) { // get extra bits (up to 13) n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } d = tp[(tp_index + t) * 3 + 2] + (b & inflate_mask[e]); b >>= (e); k -= (e); // do the copy m -= c; if (q >= d) { // offset before dest // just copy r = q - d; if (q - r > 0 && 2 > (q - r)) { s.window[q++] = s.window[r++]; c--; // minimum count is three, s.window[q++] = s.window[r++]; c--; // so unroll loop a little } else { Array.Copy(s.window, r, s.window, q, 2); q += 2; r += 2; c -= 2; } } else { // else offset after destination r = q - d; do { r += s.end; // force pointer in window } while (r < 0); // covers invalid distances e = s.end - r; if (c > e) { // if source crosses, c -= e; // wrapped copy if (q - r > 0 && e > (q - r)) { do { s.window[q++] = s.window[r++]; } while (--e != 0); } else { Array.Copy(s.window, r, s.window, q, e); q += e; r += e; e = 0; } r = 0; // copy rest from start of window } } // copy all or what's left if (q - r > 0 && c > (q - r)) { do { s.window[q++] = s.window[r++]; } while (--c != 0); } else { Array.Copy(s.window, r, s.window, q, c); q += c; r += c; c = 0; } break; } else if ((e & 64) == 0) { t += tp[(tp_index + t) * 3 + 2]; t += (b & inflate_mask[e]); e = tp[(tp_index + t) * 3]; } else { z.msg = "invalid distance code"; c = z.avail_in - n; c = (k >> 3) < c?k >> 3:c; n += c; p -= c; k -= (c << 3); s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return Z_DATA_ERROR; } } while (true); break; } if ((e & 64) == 0) { t += tp[(tp_index + t) * 3 + 2]; t += (b & inflate_mask[e]); if ((e = tp[(tp_index + t) * 3]) == 0) { b >>= (tp[(tp_index + t) * 3 + 1]); k -= (tp[(tp_index + t) * 3 + 1]); s.window[q++] = (byte) tp[(tp_index + t) * 3 + 2]; m--; break; } } else if ((e & 32) != 0) { c = z.avail_in - n; c = (k >> 3) < c?k >> 3:c; n += c; p -= c; k -= (c << 3); s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return Z_STREAM_END; } else { z.msg = "invalid literal/length code"; c = z.avail_in - n; c = (k >> 3) < c?k >> 3:c; n += c; p -= c; k -= (c << 3); s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return Z_DATA_ERROR; } } while (true); } while (m >= 258 && n >= 10); // not enough input or output--restore pointers and return c = z.avail_in - n; c = (k >> 3) < c?k >> 3:c; n += c; p -= c; k -= (c << 3); s.bitb = b; s.bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; s.write = q; return Z_OK; }
internal long check; // check on output internal InfBlocks(ZStream z, System.Object checkfn, int w) { hufts = new int[MANY * 3]; window = new byte[w]; end = w; this.checkfn = checkfn; mode = TYPE; reset(z, null); }