/// <summary>
 ///     This is called from within simulate but outside the locked portion
 ///     We need to do our own locking here
 ///     Essentially, we need to remove the prim from our space segment, whatever segment it's in.
 ///     If there are no more prim in the segment, we need to empty (spacedestroy)the segment and reclaim memory
 ///     that the space was using.
 /// </summary>
 /// <param name="prim"></param>
 internal void RemovePrimThreadLocked(ODEPrim prim)
 {
     RemCollisionEventReporting(prim);
     RemoveActivePrim(prim);
     prim.m_frozen = true;
     if (prim.prim_geom != IntPtr.Zero)
     {
         prim.DestroyBody();
         prim.IsPhysical = false;
         prim.m_targetSpace = IntPtr.Zero;
         try
         {
             if (prim.prim_geom != IntPtr.Zero)
             {
                 d.GeomDestroy(prim.prim_geom);
                 prim.prim_geom = IntPtr.Zero;
             }
             else
             {
                 MainConsole.Instance.Warn("[ODE Physics]: Unable to remove prim from physics scene");
             }
         }
         catch (AccessViolationException)
         {
             MainConsole.Instance.Info(
                 "[ODE Physics]: Couldn't remove prim from physics scene, it was already be removed.");
         }
     }
     if (!prim.childPrim)
     {
         lock (prim.childrenPrim)
             foreach (ODEPrim prm in prim.childrenPrim)
                 RemovePrimThreadLocked(prm);
     }
     lock (_prims)
         _prims.Remove(prim);
 }
 internal void AddActivePrim(ODEPrim activatePrim)
 {
     // adds active prim..   (ones that should be iterated over in collisions_optimized
     lock (_activeprimsLock)
     {
         if (!_activeprims.Contains(activatePrim))
             _activeprims.Add(activatePrim);
     }
 }
 internal void RemoveActivePrim(ODEPrim deactivatePrim)
 {
     lock (_activeprimsLock)
         _activeprims.Remove(deactivatePrim);
 }
示例#4
0
        void ChildDelink(ODEPrim odePrim)
        {
            // Okay, we have a delinked child.. destroy all body and remake
            if (odePrim != this && !childrenPrim.Contains(odePrim))
                return;

            DestroyBody();

            if (odePrim == this)
            {
                ODEPrim newroot = null;
                lock (childrenPrim)
                {
                    if (childrenPrim.Count > 0)
                    {
                        newroot = childrenPrim[0];
                        childrenPrim.RemoveAt(0);
                        foreach (ODEPrim prm in childrenPrim)
                        {
                            newroot.childrenPrim.Add(prm);
                        }
                        childrenPrim.Clear();
                    }
                    if (newroot != null)
                    {
                        newroot.childPrim = false;
                        newroot._parent = null;
                        newroot.MakeBody();
                    }
                }
            }

            else
            {
                lock (childrenPrim)
                {
                    childrenPrim.Remove(odePrim);
                    odePrim.childPrim = false;
                    odePrim._parent = null;
                    //odePrim.UpdateDataFromGeom ();
                    odePrim.MakeBody();
                }
            }

            MakeBody();
        }
        public override PhysicsActor AddPrimShape(UUID primID, uint localID, string name, byte physicsType, PrimitiveBaseShape shape, Vector3 position,
                                                    Vector3 size, Quaternion rotation, bool isPhysical, int material, float friction, float restitution,
                                                    float gravityMultiplier, float density)
        {
            ODEPrim newPrim = new ODEPrim(name, physicsType, shape, position, size, rotation, material, friction, restitution, gravityMultiplier, density, this);
            newPrim.UUID = primID;
            newPrim.LocalID = localID;

            if (isPhysical)
                newPrim.IsPhysical = isPhysical;

            lock (_prims)
                _prims.Add(newPrim);

            return newPrim;
        }
 internal void Enable(IntPtr pBody, ODEPrim parent, ODEPhysicsScene pParentScene)
 {
     if (m_enabled)
         return;
     if (pBody == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
         return;
     m_body = pBody;
     d.BodySetGravityMode(Body, true);
     m_enabled = true;
     m_lastLinearVelocityVector = parent.Velocity;
     m_lastPositionVector = parent.Position;
     m_lastAngularVelocity = parent.RotationalVelocity;
     parent.ThrottleUpdates = false;
     GetMass(pBody);
 }
示例#7
0
 void ChildSetGeom(ODEPrim odePrim)
 {
     DestroyBody();
     MakeBody();
 }
示例#8
0
 void SetInStaticSpace(ODEPrim prm)
 {
     if (prm.m_targetSpace != IntPtr.Zero && prm.m_targetSpace == _parent_scene.space)
     {
         if (d.SpaceQuery(prm.m_targetSpace, prm.prim_geom))
             d.SpaceRemove(prm.m_targetSpace, prm.prim_geom);
     }
     prm.m_targetSpace = _parent_scene.CalculateSpaceForGeom(prm._position);
     d.SpaceAdd(prm.m_targetSpace, prm.prim_geom);
 }
示例#9
0
        void ChangeLink(ODEPrim newparent)
        {
            // If the newly set parent is not null
            // create link
            if (_parent == null && newparent != null)
            {
                newparent.ParentPrim(this);
            }
                // If the newly set parent is null
                // destroy link
            else if (_parent != null)
            {
                if (_parent is ODEPrim)
                {
                    if (newparent != _parent)
                    {
                        ODEPrim obj = (ODEPrim) _parent;
                        obj.ChildDelink(this);
                        childPrim = false;

                        if (newparent != null)
                        {
                            newparent.ParentPrim(this);
                        }
                    }
                }
            }

            _parent = newparent;
        }
示例#10
0
        void MoveAngular(float pTimestep, ODEPhysicsScene _pParentScene, ODEPrim parent)
        {
            bool ishovering = false;
            d.Vector3 d_angularVelocity = d.BodyGetAngularVel(Body);
            d.Vector3 d_lin_vel_now = d.BodyGetLinearVel(Body);
            d.Quaternion drotq = d.BodyGetQuaternion(Body);
            Quaternion rotq = new Quaternion(drotq.X, drotq.Y, drotq.Z, drotq.W);
            rotq *= m_referenceFrame; //add reference rotation to rotq
            Quaternion irotq = new Quaternion(-rotq.X, -rotq.Y, -rotq.Z, rotq.W);
            Vector3 angularVelocity = new Vector3(d_angularVelocity.X, d_angularVelocity.Y, d_angularVelocity.Z);
            Vector3 linearVelocity = new Vector3(d_lin_vel_now.X, d_lin_vel_now.Y, d_lin_vel_now.Z);

            Vector3 friction = Vector3.Zero;
            Vector3 vertattr = Vector3.Zero;
            Vector3 deflection = Vector3.Zero;
            Vector3 banking = Vector3.Zero;

            //limit maximum rotation speed
            if(angularVelocity.LengthSquared() > 1e3f) {
                angularVelocity = Vector3.Zero;
                d.BodySetAngularVel(Body, angularVelocity.X, angularVelocity.Y, angularVelocity.Z);
            }

            angularVelocity *= irotq; //world to body orientation

            if(m_VhoverTimescale * pTimestep <= 300.0f && m_VhoverHeight > 0.0f) ishovering = true;

            #region Angular motor
            Vector3 motorDirection = Vector3.Zero;

            if(Type == Vehicle.TYPE_BOAT) {
                //keep z flat for boats, no sidediving lol
                Vector3 tmp = new Vector3(0.0f, 0.0f, m_angularMotorDirection.Z);
                m_angularMotorDirection.Z = 0.0f;
                m_angularMotorDirection += tmp * irotq;
            }

            if(parent.LinkSetIsColliding || Type == Vehicle.TYPE_AIRPLANE || Type == Vehicle.TYPE_BALLOON || ishovering){
                motorDirection = m_angularMotorDirection * 0.34f; //0.3f;
            }

            m_angularMotorVelocity.X = (motorDirection.X - angularVelocity.X) / m_angularMotorTimescale;
            m_angularMotorVelocity.Y = (motorDirection.Y - angularVelocity.Y) / m_angularMotorTimescale;
            m_angularMotorVelocity.Z = (motorDirection.Z - angularVelocity.Z) / m_angularMotorTimescale;
            m_angularMotorDirection *= (1.0f - 1.0f/m_angularMotorDecayTimescale);

            if(m_angularMotorDirection.LengthSquared() > 0.0f)
            {
                if(angularVelocity.X > m_angularMotorDirection.X && m_angularMotorDirection.X >= 0.0f) m_angularMotorVelocity.X = 0.0f;
                if(angularVelocity.Y > m_angularMotorDirection.Y && m_angularMotorDirection.Y >= 0.0f) m_angularMotorVelocity.Y = 0.0f;
                if(angularVelocity.Z > m_angularMotorDirection.Z && m_angularMotorDirection.Z >= 0.0f) m_angularMotorVelocity.Z = 0.0f;

                if(angularVelocity.X < m_angularMotorDirection.X && m_angularMotorDirection.X <= 0.0f) m_angularMotorVelocity.X = 0.0f;
                if(angularVelocity.Y < m_angularMotorDirection.Y && m_angularMotorDirection.Y <= 0.0f) m_angularMotorVelocity.Y = 0.0f;
                if(angularVelocity.Z < m_angularMotorDirection.Z && m_angularMotorDirection.Z <= 0.0f) m_angularMotorVelocity.Z = 0.0f;
            }

            #endregion

            #region friction

            float initialFriction = 0.0001f;
            if(angularVelocity.X > initialFriction) friction.X += initialFriction;
    	    if(angularVelocity.Y > initialFriction) friction.Y += initialFriction;
    	    if(angularVelocity.Z > initialFriction) friction.Z += initialFriction;
            if(angularVelocity.X < -initialFriction) friction.X -= initialFriction;
            if(angularVelocity.Y < -initialFriction) friction.Y -= initialFriction;
            if(angularVelocity.Z < -initialFriction) friction.Z -= initialFriction;

            if(angularVelocity.X > 0.0f)
                friction.X += angularVelocity.X * angularVelocity.X / m_angularFrictionTimescale.X;
            else
                friction.X -= angularVelocity.X * angularVelocity.X / m_angularFrictionTimescale.X;
            
            if(angularVelocity.Y > 0.0f)
                friction.Y += angularVelocity.Y * angularVelocity.Y / m_angularFrictionTimescale.Y;
            else
                friction.Y -= angularVelocity.Y * angularVelocity.Y / m_angularFrictionTimescale.Y;

            if(angularVelocity.Z > 0.0f)
                friction.Z += angularVelocity.Z * angularVelocity.Z / m_angularFrictionTimescale.Z;
            else
                friction.Z -= angularVelocity.Z * angularVelocity.Z / m_angularFrictionTimescale.Z;


            if(Math.Abs(m_angularMotorDirection.X) > 0.01f) friction.X = 0.0f;
            if(Math.Abs(m_angularMotorDirection.Y) > 0.01f) friction.Y = 0.0f;
            if(Math.Abs(m_angularMotorDirection.Z) > 0.01f) friction.Z = 0.0f;

            #endregion

            #region Vertical attraction

            if(m_verticalAttractionTimescale < 300)
            {
                float VAservo = 38.0f / m_verticalAttractionTimescale;
                if(Type == Vehicle.TYPE_CAR) VAservo = 10.0f / m_verticalAttractionTimescale;

                Vector3 verterr = new Vector3(0.0f, 0.0f, 1.0f);
                verterr *= rotq;
                vertattr.X = verterr.Y;
                vertattr.Y = -verterr.X;
                vertattr.Z = 0.0f;

                vertattr *= irotq;

                //when upsidedown prefer x rotation of body, to keep forward movement direction the same
                if(verterr.Z < 0.0f) {
                    vertattr.Y = -vertattr.Y * 2.0f;
                    if(vertattr.X < 0.0f) vertattr.X = -2.0f - vertattr.X;
                    else vertattr.X = 2.0f - vertattr.X;
                }

                vertattr *= VAservo;

                vertattr.X += (vertattr.X - angularVelocity.X) * (0.004f * m_verticalAttractionEfficiency + 0.0001f);
                vertattr.Y += (vertattr.Y - angularVelocity.Y) * (0.004f * m_verticalAttractionEfficiency + 0.0001f);

                if((m_flags & (VehicleFlag.LIMIT_ROLL_ONLY)) != 0) vertattr.Y = 0.0f;
            }

            #endregion

            #region deflection
            //rotates body to direction of movement (linearMovement vector)
			// temporary disabled due to instabilities, needs to be rewritten
            if(m_angularDeflectionTimescale < 300)
            {
                float Dservo = 0.05f * m_angularDeflectionTimescale * m_angularDeflectionEfficiency;
                float mag = linearVelocity.LengthSquared();
                if(mag > 0.01f) {
                    linearVelocity.Y = -linearVelocity.Y;
                    linearVelocity *= rotq;

                    mag = (float)Math.Sqrt(mag);

                    linearVelocity.Y /= mag;
                    linearVelocity.Z /= mag;

                    deflection.Y = -linearVelocity.Z;
                    deflection.Z = -linearVelocity.Y;

                    deflection *= Dservo;
                }
            }
			//
            #endregion

            #region banking

            if(m_verticalAttractionTimescale < 300 && m_bankingEfficiency > 0) { //vertical attraction must be enabled		
                float mag = (linearVelocity.X * linearVelocity.X + linearVelocity.Y * linearVelocity.Y);
                if(mag > 0.01f) {
                    mag = (float)Math.Sqrt(mag);
                    if(mag > 20.0f) mag = 1.0f;
                    else mag /= 20.0f;
                }
                else mag = 0.0f;

                float b_static = -m_angularMotorDirection.X * 0.12f * (1.0f - m_bankingMix);
                float b_dynamic = -m_angularMotorDirection.X * 0.12f * mag * m_bankingMix;

                banking.Z = (b_static + b_dynamic - d_angularVelocity.Z) / m_bankingTimescale * m_bankingEfficiency;
            }

            #endregion

            m_lastAngularVelocity = angularVelocity;
            
            if(parent.LinkSetIsColliding || Type == Vehicle.TYPE_AIRPLANE || Type == Vehicle.TYPE_BALLOON || ishovering) {		
                angularVelocity += deflection;
                angularVelocity -= friction;
            }
            else {
                banking = Vector3.Zero;
            }

            angularVelocity += m_angularMotorVelocity;
            angularVelocity += vertattr;
            angularVelocity *= rotq;
            angularVelocity += banking;

            if(angularVelocity.LengthSquared() < 1e-5f) {
                d.BodySetAngularVel(Body, 0, 0, 0);
                m_angularZeroFlag = true;
            }
            else {
                d.BodySetAngularVel(Body, angularVelocity.X, angularVelocity.Y, angularVelocity.Z);
                m_angularZeroFlag = false;
            }
        }
示例#11
0
        void ChildRemove(ODEPrim odePrim)
        {
            // is this one of ours?
            if (odePrim != this)
                return;
            
            bool havePrim;
            lock(childrenPrim)
                havePrim = childrenPrim.Contains (odePrim);

            // Okay, we have a delinked child.. destroy all body and remake
            if (!havePrim)
                return;

            DestroyBody();

            if (odePrim == this)
            {
                ODEPrim newroot = null;
                lock (childrenPrim)
                {
                    if (childrenPrim.Count > 0)
                    {
                        newroot = childrenPrim[0];
                        childrenPrim.RemoveAt(0);
                        foreach (ODEPrim prm in childrenPrim)
                        {
                            newroot.childrenPrim.Add(prm);
                        }
                        childrenPrim.Clear();
                    }
                    if (newroot != null)
                    {
                        newroot.childPrim = false;
                        newroot._parent = null;
                        newroot.MakeBody();
                    }
                }
                return;
            }

            lock (childrenPrim)
            {
                childrenPrim.Remove(odePrim);
                odePrim.childPrim = false;
                odePrim._parent = null;
            }

            MakeBody();
        }
示例#12
0
        // end Step

        void MoveLinear(float pTimestep, ODEPhysicsScene _pParentScene, ODEPrim parent)
        {
            bool ishovering = false;
            bool bypass_buoyancy = false;
            d.Vector3 dpos = d.BodyGetPosition(Body);
            d.Vector3 dvel_now = d.BodyGetLinearVel(Body);
            d.Quaternion drotq_now = d.BodyGetQuaternion(Body);

            Vector3 pos = new Vector3(dpos.X, dpos.Y, dpos.Z);
            Vector3 vel_now = new Vector3(dvel_now.X, dvel_now.Y, dvel_now.Z);
            Quaternion rotq = new Quaternion(drotq_now.X, drotq_now.Y, drotq_now.Z, drotq_now.W);
            rotq *= m_referenceFrame; //add reference rotation to rotq
            Quaternion irotq = new Quaternion(-rotq.X, -rotq.Y, -rotq.Z, rotq.W);

            m_newVelocity = Vector3.Zero;

            if (!(m_lastPositionVector.X == 0 &&
                  m_lastPositionVector.Y == 0 &&
                  m_lastPositionVector.Z == 0))
            {
                ///Only do this if we have a last position
                m_lastposChange.X = pos.X - m_lastPositionVector.X;
                m_lastposChange.Y = pos.Y - m_lastPositionVector.Y;
                m_lastposChange.Z = pos.Z - m_lastPositionVector.Z;
            }

            #region Blocking Change

            if (m_BlockingEndPoint != Vector3.Zero)
            {
                bool needUpdateBody = false;
                if(pos.X >= (m_BlockingEndPoint.X - 1)) {
                    pos.X -= m_lastposChange.X + 1;
                    needUpdateBody = true;
                }
                if(pos.Y >= (m_BlockingEndPoint.Y - 1)) {
                    pos.Y -= m_lastposChange.Y + 1;
                    needUpdateBody = true;
                }
                if(pos.Z >= (m_BlockingEndPoint.Z - 1)) {
                    pos.Z -= m_lastposChange.Z + 1;
                    needUpdateBody = true;
                }
                if(pos.X <= 0) {
                    pos.X += m_lastposChange.X + 1;
                    needUpdateBody = true;
                }
                if(pos.Y <= 0) {
                    pos.Y += m_lastposChange.Y + 1;
                    needUpdateBody = true;
                }
                if(needUpdateBody)
                    d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
            }

            #endregion

            #region Terrain checks

            float terrainHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
            if(pos.Z < terrainHeight - 5) {
                pos.Z = terrainHeight + 2;
                m_lastPositionVector = pos;
                d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
            }
            else if(pos.Z < terrainHeight) {
                m_newVelocity.Z += 1;
            }

            #endregion

            #region Hover

            Vector3 hovervel = Vector3.Zero;
            if(m_VhoverTimescale * pTimestep <= 300.0f && m_VhoverHeight > 0.0f) {
                ishovering = true;

                if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) {
                    m_VhoverTargetHeight = (float) _pParentScene.GetWaterLevel(pos.X, pos.Y) + 0.3f + m_VhoverHeight;
                }
                else if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) {
                    m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
                }
                else if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) {
                    m_VhoverTargetHeight = m_VhoverHeight;
                }
                else {
                    float waterlevel = (float)_pParentScene.GetWaterLevel(pos.X, pos.Y) + 0.3f;
                    float terrainlevel = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
                    if(waterlevel > terrainlevel) {
                        m_VhoverTargetHeight = waterlevel + m_VhoverHeight;
                    }
                    else {
                        m_VhoverTargetHeight = terrainlevel + m_VhoverHeight;
                    }
                }

                float tempHoverHeight = m_VhoverTargetHeight;
                if((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) {
                    // If body is aready heigher, use its height as target height
                    if (pos.Z > tempHoverHeight) {
                        tempHoverHeight = pos.Z;
                        bypass_buoyancy = true; //emulate sl bug
                    }
                }
                if((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) {
                    if((pos.Z - tempHoverHeight) > .2 || (pos.Z - tempHoverHeight) < -.2) {
                        float h = tempHoverHeight;
                        float groundHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
                        if(groundHeight >= tempHoverHeight) 
                            h = groundHeight;

                        d.BodySetPosition(Body, pos.X, pos.Y, h);
                    }
                }
                else {
                    hovervel.Z -= ((dvel_now.Z * 0.1f * m_VhoverEfficiency) + (pos.Z - tempHoverHeight)) / m_VhoverTimescale;
                    hovervel.Z *= 7.0f * (1.0f + m_VhoverEfficiency);

                    if(hovervel.Z > 50.0f) hovervel.Z = 50.0f;
                    if(hovervel.Z < -50.0f) hovervel.Z = -50.0f;
                }
            }

            #endregion

            #region limitations

            //limit maximum velocity
            if(vel_now.LengthSquared() > 1e6f) {
                vel_now /= vel_now.Length();
                vel_now *= 1000f;
                d.BodySetLinearVel(Body, vel_now.X, vel_now.Y, vel_now.Z);
            }

            //block movement in x and y when low velocity
            bool enable_ode_gravity = true;
            if(vel_now.LengthSquared() < 0.02f) {
                d.BodySetLinearVel(Body, 0.0f, 0.0f, 0.0f);
                vel_now = Vector3.Zero;
                if(parent.LinkSetIsColliding)
                    enable_ode_gravity = false;
            }

            #endregion

            #region Linear motors

            //cancel directions of linear friction for certain vehicles without having effect on ode gravity
            Vector3 vt_vel_now = vel_now;
            bool no_grav_calc = false;
            if((Type != Vehicle.TYPE_AIRPLANE && Type != Vehicle.TYPE_BALLOON) && m_VehicleBuoyancy != 1.0f) {
                vt_vel_now.Z = 0.0f;
                no_grav_calc = true;
            }

            if(!bypass_buoyancy) {
                //apply additional gravity force over ode gravity
                if(m_VehicleBuoyancy == 1.0f) enable_ode_gravity = false;
                else if(m_VehicleBuoyancy != 0.0f && enable_ode_gravity) {
                    float grav = _pParentScene.gravityz * parent.GravityMultiplier * -m_VehicleBuoyancy;
                    m_newVelocity.Z += grav * Mass;
                }
            }

            //set ode gravity
            d.BodySetGravityMode(Body, enable_ode_gravity);

            //add default linear friction (mimic sl friction as much as possible)
            float initialFriction = 0.055f;
            float defaultFriction = 180f;

            Vector3 friction = Vector3.Zero;
            if(parent.LinkSetIsColliding || ishovering) {
                if(vt_vel_now.X > 0.0f) friction.X += initialFriction;
                if(vt_vel_now.Y > 0.0f) friction.Y += initialFriction;
                if(vt_vel_now.Z > 0.0f) friction.Z += initialFriction;
                if(vt_vel_now.X < 0.0f) friction.X -= initialFriction;
                if(vt_vel_now.Y < 0.0f) friction.Y -= initialFriction;
                if(vt_vel_now.Z < 0.0f) friction.Z -= initialFriction;
                friction += vt_vel_now / defaultFriction;
                friction *= irotq;
            }

            //world -> body orientation
            vel_now *= irotq;
            vt_vel_now *= irotq;

            //add linear friction
            if(vt_vel_now.X > 0.0f)
                friction.X += vt_vel_now.X * vt_vel_now.X / m_linearFrictionTimescale.X;
            else
                friction.X -= vt_vel_now.X * vt_vel_now.X / m_linearFrictionTimescale.X;

            if(vt_vel_now.Y > 0.0f)
                friction.Y += vt_vel_now.Y * vt_vel_now.Y / m_linearFrictionTimescale.Y;
            else
                friction.Y -= vt_vel_now.Y * vt_vel_now.Y / m_linearFrictionTimescale.Y;

            if(vt_vel_now.Z > 0.0f)
                friction.Z += vt_vel_now.Z * vt_vel_now.Z / m_linearFrictionTimescale.Z;
            else
                friction.Z -= vt_vel_now.Z * vt_vel_now.Z / m_linearFrictionTimescale.Z;
	    
            friction /= 1.35f; //1.5f;

            //add linear forces
            //not the best solution, but it is really close to sl motor velocity, and just works
            Vector3 motorVelocity = (m_linearMotorDirection * 3.0f - vel_now) / m_linearMotorTimescale / 5.0f;  //2.8f;
            Vector3 motorfrictionamp = new Vector3(4.0f, 4.0f, 4.0f);
            Vector3 motorfrictionstart = new Vector3(1.0f, 1.0f, 1.0f);
            motorVelocity *= motorfrictionstart + motorfrictionamp / (m_linearFrictionTimescale * pTimestep);
            float addVel = 0.15f;
            if(motorVelocity.LengthSquared() > 0.01f) {
                if(motorVelocity.X > 0.0f) motorVelocity.X += addVel;
                if(motorVelocity.Y > 0.0f) motorVelocity.Y += addVel;
                if(motorVelocity.Z > 0.0f) motorVelocity.Z += addVel;
                if(motorVelocity.X < 0.0f) motorVelocity.X -= addVel;
                if(motorVelocity.Y < 0.0f) motorVelocity.Y -= addVel;
                if(motorVelocity.Z < 0.0f) motorVelocity.Z -= addVel;
            }

            //free run
            if(vel_now.X > m_linearMotorDirection.X && m_linearMotorDirection.X >= 0.0f) motorVelocity.X = 0.0f;
            if(vel_now.Y > m_linearMotorDirection.Y && m_linearMotorDirection.Y >= 0.0f) motorVelocity.Y = 0.0f;
            if(vel_now.Z > m_linearMotorDirection.Z && m_linearMotorDirection.Z >= 0.0f) motorVelocity.Z = 0.0f;

            if(vel_now.X < m_linearMotorDirection.X && m_linearMotorDirection.X <= 0.0f) motorVelocity.X = 0.0f;
            if(vel_now.Y < m_linearMotorDirection.Y && m_linearMotorDirection.Y <= 0.0f) motorVelocity.Y = 0.0f;
            if(vel_now.Z < m_linearMotorDirection.Z && m_linearMotorDirection.Z <= 0.0f) motorVelocity.Z = 0.0f;

            //decay linear motor
            m_linearMotorDirection *= (1.0f - 1.0f/m_linearMotorDecayTimescale);

            #endregion

            #region Deflection

            //does only deflect on x axis from world orientation with z axis rotated to body
            //it is easier to filter out gravity deflection for vehicles(car) without rotation problems
            Quaternion irotq_z = irotq;
            irotq_z.X = 0.0f;
            irotq_z.Y = 0.0f;
            float mag = (float)Math.Sqrt(irotq_z.W * irotq_z.W + irotq_z.Z * irotq_z.Z); //normalize
            irotq_z.W /= mag;
            irotq_z.Z /= mag;

            Vector3 vel_defl = new Vector3(dvel_now.X, dvel_now.Y, dvel_now.Z);
            vel_defl *= irotq_z;
            if(no_grav_calc) {
                vel_defl.Z = 0.0f;
                if(!parent.LinkSetIsColliding) vel_defl.Y = 0.0f;
            }

            Vector3 deflection = vel_defl / m_linearDeflectionTimescale * m_linearDeflectionEfficiency * 100.0f;
            
			float deflectionLengthY = Math.Abs(deflection.Y);
            float deflectionLengthX = Math.Abs(deflection.X);

            deflection.Z = 0.0f;
            if((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) == 0) {
                deflection.Z = deflectionLengthX;
                deflection.X = -deflection.X;
            }

            if(vel_defl.X < 0.0f) deflection.X = -deflectionLengthY;
            else if(vel_defl.X >= 0.0f) deflection.X = deflectionLengthY;
            deflection.Y = -deflection.Y;

            irotq_z.W = -irotq_z.W;
            deflection *= irotq_z;

            #endregion

            #region Deal with tainted forces

            Vector3 TaintedForce = new Vector3();
            if(m_forcelist.Count != 0) {
                try {
                    TaintedForce = m_forcelist.Aggregate(TaintedForce, (current, t) => current + (t));
                }
                catch(IndexOutOfRangeException) {
                    TaintedForce = Vector3.Zero;
                }
                catch(ArgumentOutOfRangeException) {
                    TaintedForce = Vector3.Zero;
                }
                m_forcelist = new List<Vector3>();
            }

            #endregion

            #region Add Forces

            //add forces
            m_newVelocity -= (friction *= Mass / pTimestep);
            m_newVelocity += TaintedForce;
            motorVelocity *= Mass / pTimestep;

            #endregion

            #region No X,Y,Z

            if((m_flags & (VehicleFlag.NO_X)) != 0)
                m_newVelocity.X = -vel_now.X * Mass / pTimestep;
            if((m_flags & (VehicleFlag.NO_Y)) != 0)
                m_newVelocity.Y = -vel_now.Y * Mass / pTimestep;
            if((m_flags & (VehicleFlag.NO_Z)) != 0)
                m_newVelocity.Z = -vel_now.Z * Mass / pTimestep;

            #endregion

    	    m_newVelocity *= rotq;
            m_newVelocity += (hovervel *= Mass / pTimestep);
	    
            if(parent.LinkSetIsColliding || Type == Vehicle.TYPE_AIRPLANE || Type == Vehicle.TYPE_BALLOON || ishovering) {
                m_newVelocity += deflection;

                motorVelocity *= rotq;

                if((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0 && motorVelocity.Z > 0.0f) motorVelocity.Z = 0.0f;
                m_newVelocity += motorVelocity;
            }

            d.BodyAddForce(Body, m_newVelocity.X, m_newVelocity.Y, m_newVelocity.Z);

        }
示例#13
0
        internal void Step(IntPtr pBody, float pTimestep, ODEPhysicsScene pParentScene, ODEPrim parent)
        {
            m_body = pBody;
            if (pBody == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
                return;
            if (Mass == 0)
                GetMass(pBody);
            if (Mass == 0)
                return; //No noMass vehicles...
            if (!d.BodyIsEnabled(Body))
                d.BodyEnable(Body);

            frcount++; // used to limit debug comment output
            if (frcount > 100)
                frcount = 0;

            // scale time so parameters work as before
            // until we scale then acording to ode step time

            MoveLinear(pTimestep, pParentScene, parent);
            MoveAngular(pTimestep, pParentScene, parent);
            LimitRotation(pTimestep);
        }
示例#14
0
 internal void Disable(ODEPrim parent)
 {
     if (!m_enabled || m_type == Vehicle.TYPE_NONE)
         return;
     m_enabled = false;
     parent.ThrottleUpdates = true;
     parent.ForceSetVelocity(Vector3.Zero);
     parent.ForceSetRotVelocity(Vector3.Zero);
     parent.ForceSetPosition(parent.Position);
     d.BodySetGravityMode(Body, false);
     m_body = IntPtr.Zero;
     m_linearMotorDirection = Vector3.Zero;
     m_linearMotorDirectionLASTSET = Vector3.Zero;
     m_angularMotorDirection = Vector3.Zero;
 }
        /// <summary>
        ///     Routine to figure out if we need to mesh this prim with our mesher
        /// </summary>
        internal bool NeedsMeshing(ODEPrim prim, byte physicalType)
        {
            PrimitiveBaseShape pbs = prim.Shape;
            // most of this is redundant now as the mesher will return null if it cant mesh a prim
            // but we still need to check for sculptie meshing being enabled so this is the most
            // convenient place to do it for now...

            //    //if (pbs.PathCurve == (byte)Primitive.PathCurve.Circle && pbs.ProfileCurve == (byte)Primitive.ProfileCurve.Circle && pbs.PathScaleY <= 0.75f)
            //    //MainConsole.Instance.Debug("needsMeshing: " + " pathCurve: " + pbs.PathCurve.ToString() + " profileCurve: " + pbs.ProfileCurve.ToString() + " pathScaleY: " + Primitive.UnpackPathScale(pbs.PathScaleY).ToString());
            int iPropertiesNotSupportedDefault = 0;

//            return true;

            if (forceSimplePrimMeshing)
                return true;
            // let simple spheres use ode sphere object
            PrimitiveBaseShape sphere = PrimitiveBaseShape.CreateSphere();
            if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte) Extrusion.Curve1
                && pbs.Scale.X == pbs.Scale.Y && pbs.Scale.X == pbs.Scale.Z && pbs.ProfileHollow == sphere.ProfileHollow &&
                pbs.PathBegin == sphere.PathBegin && pbs.PathEnd == sphere.PathEnd &&
                pbs.PathCurve == sphere.PathCurve && pbs.HollowShape == sphere.HollowShape &&
                pbs.PathRadiusOffset == sphere.PathRadiusOffset && pbs.PathRevolutions == sphere.PathRevolutions &&
                pbs.PathScaleY == sphere.PathScaleY && pbs.PathShearX == sphere.PathShearX &&
                pbs.PathShearY == sphere.PathShearY && pbs.PathSkew == sphere.PathSkew &&
                pbs.PathTaperY == sphere.PathTaperY && pbs.PathTwist == sphere.PathTwist &&
                pbs.PathTwistBegin == sphere.PathTwistBegin && pbs.ProfileBegin == sphere.ProfileBegin &&
                pbs.ProfileEnd == sphere.ProfileEnd && pbs.ProfileHollow == sphere.ProfileHollow &&
                pbs.ProfileShape == sphere.ProfileShape)
                return false;

            if (pbs.SculptEntry && !meshSculptedPrim)
                return false;

            if (pbs.SculptType != (byte) SculptType.Mesh &&
                     pbs.SculptType != (byte) SculptType.None)
                return true; //Sculpty, mesh it

            if (pbs.SculptType == (byte) SculptType.Mesh)
            {
                //Mesh, we need to see what the prims says to do with it
                if (physicalType == (byte) PhysicsShapeType.Prim)
                    return false; //Supposed to be a simple box, nothing more
                else
                    return true; //Mesh it!
            }

            // if it's a standard box or sphere with no cuts, hollows, twist or top shear, return false since ODE can use an internal representation for the prim
            if (!forceSimplePrimMeshing)
            {
                if ((pbs.ProfileShape == ProfileShape.Square && pbs.PathCurve == (byte) Extrusion.Straight)
                    /*|| (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte)Extrusion.Curve1
                    && pbs.Scale.X == pbs.Scale.Y && pbs.Scale.Y == pbs.Scale.Z)*/)
                {
                    if (pbs.ProfileBegin == 0 && pbs.ProfileEnd == 0
                        && pbs.ProfileHollow == 0
                        && pbs.PathTwist == 0 && pbs.PathTwistBegin == 0
                        && pbs.PathBegin == 0 && pbs.PathEnd == 0
                        && pbs.PathTaperX == 0 && pbs.PathTaperY == 0
                        && pbs.PathScaleX == 100 && pbs.PathScaleY == 100
                        && pbs.PathShearX == 0 && pbs.PathShearY == 0)
                    {
#if SPAM
                    MainConsole.Instance.Warn("NonMesh");
#endif
                        return false;
                    }
                }
            }

            if (pbs.ProfileHollow != 0)
                iPropertiesNotSupportedDefault++;
            else if ((pbs.PathTwistBegin != 0) || (pbs.PathTwist != 0))
                iPropertiesNotSupportedDefault++;
            else if ((pbs.ProfileBegin != 0) || pbs.ProfileEnd != 0)
                iPropertiesNotSupportedDefault++;
            else if (pbs.PathBegin != 0 || pbs.PathEnd != 0)
                iPropertiesNotSupportedDefault++;
            else if ((pbs.PathScaleX != 100) || (pbs.PathScaleY != 100))
                iPropertiesNotSupportedDefault++;
            else if ((pbs.PathShearX != 0) || (pbs.PathShearY != 0))
                iPropertiesNotSupportedDefault++;
            else if (pbs.ProfileShape == ProfileShape.Circle && pbs.PathCurve == (byte) Extrusion.Straight)
                iPropertiesNotSupportedDefault++;
            else if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte) Extrusion.Curve1 &&
                     (pbs.Scale.X != pbs.Scale.Y || pbs.Scale.Y != pbs.Scale.Z || pbs.Scale.Z != pbs.Scale.X))
                iPropertiesNotSupportedDefault++;
            else if (pbs.ProfileShape == ProfileShape.HalfCircle && pbs.PathCurve == (byte) Extrusion.Curve1)
                iPropertiesNotSupportedDefault++;
                // test for torus
            else if ((pbs.ProfileCurve & 0x07) == (byte) ProfileShape.Square &&
                     pbs.PathCurve == (byte) Extrusion.Curve1)
                iPropertiesNotSupportedDefault++;
            else if ((pbs.ProfileCurve & 0x07) == (byte) ProfileShape.HalfCircle &&
                     (pbs.PathCurve == (byte) Extrusion.Curve1 || pbs.PathCurve == (byte) Extrusion.Curve2))
                iPropertiesNotSupportedDefault++;
            else if ((pbs.ProfileCurve & 0x07) == (byte) ProfileShape.EquilateralTriangle)
            {
                if (pbs.PathCurve == (byte) Extrusion.Straight)
                {
                    iPropertiesNotSupportedDefault++;
                }
                else if (pbs.PathCurve == (byte) Extrusion.Curve1)
                {
                    iPropertiesNotSupportedDefault++;
                }
            }
            if ((pbs.ProfileCurve & 0x07) == (byte) ProfileShape.Circle)
            {
                if (pbs.PathCurve == (byte) Extrusion.Straight)
                {
                    iPropertiesNotSupportedDefault++;
                }

                    // ProfileCurve seems to combine hole shape and profile curve so we need to only compare against the lower 3 bits
                else if (pbs.PathCurve == (byte) Extrusion.Curve1)
                {
                    iPropertiesNotSupportedDefault++;
                }
            }


            if (iPropertiesNotSupportedDefault == 0)
            {
#if SPAM
                MainConsole.Instance.Warn("NonMesh");
#endif
                return false;
            }
#if SPAM
            MainConsole.Instance.Debug("Mesh");
#endif
            return true;
        }
示例#16
0
        // I'm the parent
        // prim is the child
        public void ParentPrim(ODEPrim prim)
        {
            //Console.WriteLine("ParentPrim  " + m_primName);
            if (m_localID != prim.m_localID)
            {
                DestroyBody();

                lock (childrenPrim)
                {
                    foreach (ODEPrim prm in prim.childrenPrim.Where(prm => !childrenPrim.Contains(prm)))
                    {
                        childrenPrim.Add(prm);
                    }

                    if (!childrenPrim.Contains(prim)) // must allow full reconstruction
                        childrenPrim.Add(prim);
                
                    //Remove old children
                    prim.childrenPrim.Clear();
                    prim.childPrim = true;
                    prim._parent = this;
                }

                if (prim.Body != IntPtr.Zero)
                {
                    prim.DestroyBody(); // don't loose bodies around
                    prim.Body = IntPtr.Zero;
                }
                MakeBody(); // full nasty reconstruction
            }
        }
		internal void BadPrim(ODEPrim whitecoreODEPrim)
        {
			RemovePrim(whitecoreODEPrim);
            //Can't really do this here... as it will be readded before the delete gets called, which is wrong...
            //So... leave the prim out there for now
			//AddPrimShape(whitecoreODEPrim.ParentEntity);
        }
示例#18
0
        internal void ProcessTypeChange(ODEPrim parent, Vehicle pType, float timestep)
        {
            // Set Defaults For Type
            m_type = pType;
            switch (pType)
            {
                case Vehicle.TYPE_NONE:
                    m_linearFrictionTimescale = new Vector3(1000/timestep, 1000/timestep, 1000/timestep);
                    m_angularFrictionTimescale = new Vector3(1000/timestep, 1000/timestep, 1000/timestep);
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 1000/timestep;
                    m_linearMotorDecayTimescale = 1000/timestep;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 1000/timestep;
                    m_angularMotorDecayTimescale = 120/timestep;
                    m_VhoverHeight = 0;
                    m_VhoverTimescale = 1000/timestep;
                    m_VehicleBuoyancy = 0;

                    m_linearDeflectionEfficiency = 1;
                    m_linearDeflectionTimescale = 1/timestep;

                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 1000/timestep;

                    m_bankingEfficiency = 0;
                    m_bankingMix = 1;
                    m_bankingTimescale = 1000/timestep;

                    m_flags = 0;
                    m_referenceFrame = Quaternion.Identity;
                    break;

                case Vehicle.TYPE_SLED:
                    m_linearFrictionTimescale = new Vector3(30/timestep, 1/timestep, 1000/timestep);

                    m_angularFrictionTimescale = new Vector3(1000/timestep, 1000/timestep, 1000/timestep);

                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 1000/timestep;
                    m_linearMotorDecayTimescale = 120/timestep;

                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 1000/timestep;
                    m_angularMotorDecayTimescale = 120/timestep;

                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 10;
                    m_VhoverTimescale = 10/timestep;
                    m_VehicleBuoyancy = 0;

                    m_linearDeflectionEfficiency = 1;
                    m_linearDeflectionTimescale = 1/timestep;

                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 1000/timestep;

                    m_bankingEfficiency = 0;
                    m_bankingMix = 1;
                    m_bankingTimescale = 10/timestep;

                    m_referenceFrame = Quaternion.Identity;
                    m_flags &=
                        ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                          VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
                    break;
                case Vehicle.TYPE_CAR:
                    m_linearFrictionTimescale = new Vector3(100/timestep, 2/timestep, 1000/timestep);
                    m_angularFrictionTimescale = new Vector3(1000/timestep, 1000/timestep, 1000/timestep);
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 1/timestep;
                    m_linearMotorDecayTimescale = 60/timestep;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 1/timestep;
                    m_angularMotorDecayTimescale = 0.8f/timestep;
                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0;
                    m_VhoverTimescale = 1000/timestep;
                    m_VehicleBuoyancy = 0;
                    m_linearDeflectionEfficiency = 1;
                    m_linearDeflectionTimescale = 2/timestep;
                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 10/timestep;
                    m_verticalAttractionEfficiency = 1f;
                    m_verticalAttractionTimescale = 10f/timestep;
                    m_bankingEfficiency = -0.2f;
                    m_bankingMix = 1;
                    m_bankingTimescale = 1/timestep;
                    m_referenceFrame = Quaternion.Identity;
                    m_flags &=
                        ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                          VehicleFlag.HOVER_GLOBAL_HEIGHT);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY |
                                VehicleFlag.LIMIT_MOTOR_UP | VehicleFlag.HOVER_UP_ONLY);
                    break;
                case Vehicle.TYPE_BOAT:
                    m_linearFrictionTimescale = new Vector3(10/timestep, 3/timestep, 2/timestep);
                    m_angularFrictionTimescale = new Vector3(10/timestep, 10/timestep, 10/timestep);
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 5/timestep;
                    m_linearMotorDecayTimescale = 60/timestep;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 4/timestep;
                    m_angularMotorDecayTimescale = 4/timestep;
                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0.5f;
                    m_VhoverTimescale = 2/timestep;
                    m_VehicleBuoyancy = 1;
                    m_linearDeflectionEfficiency = 0.5f;
                    m_linearDeflectionTimescale = 3/timestep;
                    m_angularDeflectionEfficiency = 0.5f;
                    m_angularDeflectionTimescale = 5/timestep;
                    m_verticalAttractionEfficiency = 0.5f;
                    m_verticalAttractionTimescale = 5f/timestep;
                    m_bankingEfficiency = -0.3f;
                    m_bankingMix = 0.8f;
                    m_bankingTimescale = 1/timestep;
                    m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                                 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.NO_DEFLECTION_UP |
                                VehicleFlag.LIMIT_MOTOR_UP |
                                VehicleFlag.HOVER_WATER_ONLY);
                    break;
                case Vehicle.TYPE_AIRPLANE:
                    m_linearFrictionTimescale = new Vector3(200/timestep, 10/timestep, 5/timestep);
                    m_angularFrictionTimescale = new Vector3(20/timestep, 20/timestep, 20/timestep);
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 2/timestep;
                    m_linearMotorDecayTimescale = 60/timestep;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 4/timestep;
                    m_angularMotorDecayTimescale = 4/timestep;
                    m_VhoverHeight = 0;
                    m_VhoverEfficiency = 0.5f;
                    m_VhoverTimescale = 1000/timestep;
                    m_VehicleBuoyancy = 0;
                    m_linearDeflectionEfficiency = 0.5f;
                    m_linearDeflectionTimescale = 3/timestep;
                    m_angularDeflectionEfficiency = 1;
                    m_angularDeflectionTimescale = 2/timestep;
                    m_verticalAttractionEfficiency = 0.9f;
                    m_verticalAttractionTimescale = 2f/timestep;
                    m_bankingEfficiency = 1;
                    m_bankingMix = 0.7f;
                    m_bankingTimescale = 2;
                    m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP |
                                 VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                                 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
                    break;
                case Vehicle.TYPE_BALLOON:
                    m_linearFrictionTimescale = new Vector3(5/timestep, 5/timestep, 5/timestep);
                    m_angularFrictionTimescale = new Vector3(10/timestep, 10/timestep, 10/timestep);
                    m_linearMotorDirection = Vector3.Zero;
                    m_linearMotorTimescale = 5/timestep;
                    m_linearMotorDecayTimescale = 60/timestep;
                    m_angularMotorDirection = Vector3.Zero;
                    m_angularMotorTimescale = 6/timestep;
                    m_angularMotorDecayTimescale = 10/timestep;
                    m_VhoverHeight = 5;
                    m_VhoverEfficiency = 0.8f;
                    m_VhoverTimescale = 10/timestep;
                    m_VehicleBuoyancy = 1;
                    m_linearDeflectionEfficiency = 0;
                    m_linearDeflectionTimescale = 5/timestep;
                    m_angularDeflectionEfficiency = 0;
                    m_angularDeflectionTimescale = 5/timestep;
                    m_verticalAttractionEfficiency = 1f;
                    m_verticalAttractionTimescale = 100f/timestep;
                    m_bankingEfficiency = 0;
                    m_bankingMix = 0.7f;
                    m_bankingTimescale = 5/timestep;
                    m_referenceFrame = Quaternion.Identity;
                    m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP |
                                 VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
                                 VehicleFlag.HOVER_UP_ONLY);
                    m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
                    break;
            }
        }