public abstract int GetNumberOfCompoundChildren(BulletShape cShape);
public BSShapeMesh(BulletShape pShape) : base(pShape) { }
BulletShape CreatePhysicalHull(BSScene physicsScene, BSPhysObject prim, UInt64 newHullKey, PrimitiveBaseShape pbs, OMV.Vector3 size, float lod) { BulletShape newShape = new BulletShape(); IMesh meshData; List<List<OMV.Vector3>> allHulls = null; lock (physicsScene.mesher) { // Pass true for physicalness as this prevents the creation of bounding box which is not needed meshData = physicsScene.mesher.CreateMesh(prim.PhysObjectName, pbs, size, lod, true /* isPhysical */, false /* shouldCache */); // If we should use the asset's hull info, fetch it out of the locked mesher if (meshData != null && BSParam.ShouldUseAssetHulls) { Meshmerizer realMesher = physicsScene.mesher as Meshmerizer; if (realMesher != null) { allHulls = realMesher.GetConvexHulls(size); } if (allHulls == null) { physicsScene.DetailLog("{0},BSShapeHull.CreatePhysicalHull,assetHulls,noAssetHull", prim.LocalID); } } } // If there is hull data in the mesh asset, build the hull from that if (allHulls != null && BSParam.ShouldUseAssetHulls) { int hullCount = allHulls.Count; shapeInfo.HullCount = hullCount; int totalVertices = 1; // include one for the count of the hulls // Using the structure described for HACD hulls, create the memory structure // to pass the hull data to the creater. foreach (List<OMV.Vector3> hullVerts in allHulls) { totalVertices += 4; // add four for the vertex count and centroid totalVertices += hullVerts.Count*3; // one vertex is three dimensions } float[] convHulls = new float[totalVertices]; convHulls[0] = (float) hullCount; int jj = 1; int hullIndex = 0; foreach (List<OMV.Vector3> hullVerts in allHulls) { convHulls[jj + 0] = hullVerts.Count; convHulls[jj + 1] = 0f; // centroid x,y,z convHulls[jj + 2] = 0f; convHulls[jj + 3] = 0f; jj += 4; foreach (OMV.Vector3 oneVert in hullVerts) { convHulls[jj + 0] = oneVert.X; convHulls[jj + 1] = oneVert.Y; convHulls[jj + 2] = oneVert.Z; jj += 3; } shapeInfo.SetVerticesPerHull(hullIndex, hullVerts.Count); hullIndex++; } // create the hull data structure in Bullet newShape = physicsScene.PE.CreateHullShape(physicsScene.World, hullCount, convHulls); physicsScene.DetailLog("{0},BSShapeHull.CreatePhysicalHull,AssetHulls,hulls={1},totVert={2},shape={3}", prim.LocalID, hullCount, totalVertices, newShape); } // If no hull specified in the asset and we should use Bullet's HACD approximation... if (!newShape.HasPhysicalShape && BSParam.ShouldUseBulletHACD) { // Build the hull shape from an existing mesh shape. // The mesh should have already been created in Bullet. physicsScene.DetailLog("{0},BSShapeHull.CreatePhysicalHull,bulletHACD,entry", prim.LocalID); var meshShape = BSShapeMesh.GetReference(physicsScene, true, prim); if (meshShape.physShapeInfo.HasPhysicalShape) { HACDParams parms = new HACDParams(); parms.maxVerticesPerHull = BSParam.BHullMaxVerticesPerHull; parms.minClusters = BSParam.BHullMinClusters; parms.compacityWeight = BSParam.BHullCompacityWeight; parms.volumeWeight = BSParam.BHullVolumeWeight; parms.concavity = BSParam.BHullConcavity; parms.addExtraDistPoints = BSParam.NumericBool(BSParam.BHullAddExtraDistPoints); parms.addNeighboursDistPoints = BSParam.NumericBool(BSParam.BHullAddNeighboursDistPoints); parms.addFacesPoints = BSParam.NumericBool(BSParam.BHullAddFacesPoints); parms.shouldAdjustCollisionMargin = BSParam.NumericBool(BSParam.BHullShouldAdjustCollisionMargin); parms.whichHACD = 0; // Use the HACD routine that comes with Bullet physicsScene.DetailLog("{0},BSShapeHull.CreatePhysicalHull,hullFromMesh,beforeCall", prim.LocalID, newShape.HasPhysicalShape); newShape = physicsScene.PE.BuildHullShapeFromMesh(physicsScene.World, meshShape.physShapeInfo, parms); physicsScene.DetailLog("{0},BSShapeHull.CreatePhysicalHull,hullFromMesh,shape={1}", prim.LocalID, newShape); // Now done with the mesh shape. shapeInfo.HullCount = 1; BSShapeMesh maybeMesh = meshShape as BSShapeMesh; if (maybeMesh != null) shapeInfo.SetVerticesPerHull(0, maybeMesh.shapeInfo.Vertices); meshShape.Dereference(physicsScene); } physicsScene.DetailLog("{0},BSShapeHull.CreatePhysicalHull,bulletHACD,exit,hasBody={1}", prim.LocalID, newShape.HasPhysicalShape); } // If no other hull specifications, use our HACD hull approximation. if (!newShape.HasPhysicalShape && meshData != null) { if (prim.PrimAssetState == BSPhysObject.PrimAssetCondition.Fetched) { // Release the fetched asset data once it has been used. pbs.SculptData = new byte[0]; prim.PrimAssetState = BSPhysObject.PrimAssetCondition.Unknown; } int[] indices = meshData.getIndexListAsInt(); //format conversion from IMesh format to DecompDesc format List<int> convIndices = new List<int>(); List<float3> convVertices = new List<float3>(); for (int ii = 0; ii < indices.GetLength(0); ii++) { convIndices.Add(indices[ii]); } // greythane - use the integer array instead of OS type vertex list // List<OMV.Vector3> vertices = meshData.getVertexList(); // foreach (OMV.Vector3 vv in vertices) // { // convVertices.Add(new float3(vv.X, vv.Y, vv.Z)); // } var vertices = meshData.getVertexListAsFloat(); var vertexCount = vertices.Length / 3; for (int i = 0; i < vertexCount; i++) { convVertices.Add(new float3(vertices[3 * i + 0], vertices[3 * i + 1], vertices[3 * i + 2])); } uint maxDepthSplit = (uint) BSParam.CSHullMaxDepthSplit; if (BSParam.CSHullMaxDepthSplit != BSParam.CSHullMaxDepthSplitForSimpleShapes) { // Simple primitive shapes we know are convex so they are better implemented with // fewer hulls. // Check for simple shape (prim without cuts) and reduce split parameter if so. if (BSShapeCollection.PrimHasNoCuts(pbs)) { maxDepthSplit = (uint) BSParam.CSHullMaxDepthSplitForSimpleShapes; } } // setup and do convex hull conversion m_hulls = new List<ConvexResult>(); DecompDesc dcomp = new DecompDesc(); dcomp.mIndices = convIndices; dcomp.mVertices = convVertices; dcomp.mDepth = maxDepthSplit; dcomp.mCpercent = BSParam.CSHullConcavityThresholdPercent; dcomp.mPpercent = BSParam.CSHullVolumeConservationThresholdPercent; dcomp.mMaxVertices = (uint) BSParam.CSHullMaxVertices; dcomp.mSkinWidth = BSParam.CSHullMaxSkinWidth; ConvexBuilder convexBuilder = new ConvexBuilder(HullReturn); // create the hull into the _hulls variable convexBuilder.process(dcomp); physicsScene.DetailLog( "{0},BSShapeCollection.CreatePhysicalHull,key={1},inVert={2},inInd={3},split={4},hulls={5}", BSScene.DetailLogZero, newHullKey, indices.GetLength(0), vertices.Length, maxDepthSplit, m_hulls.Count); // Convert the vertices and indices for passing to unmanaged. // The hull information is passed as a large floating point array. // The format is: // convHulls[0] = number of hulls // convHulls[1] = number of vertices in first hull // convHulls[2] = hull centroid X coordinate // convHulls[3] = hull centroid Y coordinate // convHulls[4] = hull centroid Z coordinate // convHulls[5] = first hull vertex X // convHulls[6] = first hull vertex Y // convHulls[7] = first hull vertex Z // convHulls[8] = second hull vertex X // ... // convHulls[n] = number of vertices in second hull // convHulls[n+1] = second hull centroid X coordinate // ... // // TODO: is is very inefficient. Someday change the convex hull generator to return // data structures that do not need to be converted in order to pass to Bullet. // And maybe put the values directly into pinned memory rather than marshaling. int hullCount = m_hulls.Count; int totalVertices = 1; // include one for the count of the hulls foreach (ConvexResult cr in m_hulls) { totalVertices += 4; // add four for the vertex count and centroid totalVertices += cr.HullIndices.Count*3; // we pass just triangles } float[] convHulls = new float[totalVertices]; convHulls[0] = (float) hullCount; int jj = 1; foreach (ConvexResult cr in m_hulls) { // copy vertices for index access float3[] verts = new float3[cr.HullVertices.Count]; int kk = 0; foreach (float3 ff in cr.HullVertices) { verts[kk++] = ff; } // add to the array one hull's worth of data convHulls[jj++] = cr.HullIndices.Count; convHulls[jj++] = 0f; // centroid x,y,z convHulls[jj++] = 0f; convHulls[jj++] = 0f; foreach (int ind in cr.HullIndices) { convHulls[jj++] = verts[ind].x; convHulls[jj++] = verts[ind].y; convHulls[jj++] = verts[ind].z; } } // create the hull data structure in Bullet newShape = physicsScene.PE.CreateHullShape(physicsScene.World, hullCount, convHulls); } newShape.shapeKey = newHullKey; return newShape; }
public virtual void DumpCollisionShape(BulletWorld sim, BulletShape collisionShape) { }
public BSShapeGImpact(BulletShape pShape) : base(pShape) { }
public abstract bool IsSoftBody(BulletShape shape);
public abstract Vector3 CalculateLocalInertia(BulletShape shape, float mass);
public abstract BulletShape DuplicateCollisionShape(BulletWorld sim, BulletShape srcShape, UInt32 id);
public abstract bool DeleteCollisionShape(BulletWorld world, BulletShape shape);
public abstract void UpdateChildTransform(BulletShape pShape, int childIndex, Vector3 pos, Quaternion rot, bool shouldRecalculateLocalAabb);
public abstract void RecalculateCompoundShapeLocalAabb(BulletShape cShape);
public abstract void RemoveChildShapeFromCompoundShape(BulletShape cShape, BulletShape removeShape);
public abstract BulletShape RemoveChildShapeFromCompoundShapeIndex(BulletShape cShape, int indx);
public abstract void AddChildShapeToCompoundShape(BulletShape cShape, BulletShape addShape, Vector3 pos, Quaternion rot);
public abstract bool IsConvex(BulletShape shape);
public abstract BulletBody CreateBodyWithDefaultMotionState(BulletShape shape, UInt32 id, Vector3 pos, Quaternion rot);
public abstract bool IsConcave(BulletShape shape);
public abstract BulletBody CreateGhostFromShape(BulletWorld sim, BulletShape shape, UInt32 id, Vector3 pos, Quaternion rot);
public abstract void SetLocalScaling(BulletShape shape, Vector3 scale);
public abstract void SetCollisionShape(BulletWorld sim, BulletBody obj, BulletShape shape);
public abstract void SetMargin(BulletShape shape, float val);
// ===================================================================================== // btCollisionShape entries public abstract float GetAngularMotionDisc(BulletShape shape);
// Sometimes we have a pointer to a collision shape but don't know what type it is. // Figure out type and call the correct dereference routine. // Called at taint-time. void DereferenceAnonCollisionShape(BSScene physicsScene, BulletShape pShape) { // TODO: figure a better way to go through all the shape types and find a possible instance. physicsScene.DetailLog("{0},BSShapeCompound.DereferenceAnonCollisionShape,shape={1}", BSScene.DetailLogZero, pShape); BSShapeMesh meshDesc; if (BSShapeMesh.TryGetMeshByPtr(pShape, out meshDesc)) { meshDesc.Dereference(physicsScene); // physicsScene.DetailLog("{0},BSShapeCompound.DereferenceAnonCollisionShape,foundMesh,shape={1}", BSScene.DetailLogZero, pShape); } else { BSShapeHull hullDesc; if (BSShapeHull.TryGetHullByPtr(pShape, out hullDesc)) { hullDesc.Dereference(physicsScene); // physicsScene.DetailLog("{0},BSShapeCompound.DereferenceAnonCollisionShape,foundHull,shape={1}", BSScene.DetailLogZero, pShape); } else { BSShapeConvexHull chullDesc; if (BSShapeConvexHull.TryGetConvexHullByPtr(pShape, out chullDesc)) { chullDesc.Dereference(physicsScene); // physicsScene.DetailLog("{0},BSShapeCompound.DereferenceAnonCollisionShape,foundConvexHull,shape={1}", BSScene.DetailLogZero, pShape); } else { BSShapeGImpact gImpactDesc; if (BSShapeGImpact.TryGetGImpactByPtr(pShape, out gImpactDesc)) { gImpactDesc.Dereference(physicsScene); // physicsScene.DetailLog("{0},BSShapeCompound.DereferenceAnonCollisionShape,foundgImpact,shape={1}", BSScene.DetailLogZero, pShape); } else { // Didn't find it in the lists of specific types. It could be compound. BSShapeCompound compoundDesc; if (TryGetCompoundByPtr(pShape, out compoundDesc)) { compoundDesc.Dereference(physicsScene); // physicsScene.DetailLog("{0},BSShapeCompound.DereferenceAnonCollisionShape,recursiveCompoundShape,shape={1}", BSScene.DetailLogZero, pShape); } else { // If none of the above, maybe it is a simple native shape. if (physicsScene.PE.IsNativeShape(pShape)) { // physicsScene.DetailLog("{0},BSShapeCompound.DereferenceAnonCollisionShape,assumingNative,shape={1}", BSScene.DetailLogZero, pShape); BSShapeNative nativeShape = new BSShapeNative(pShape); nativeShape.Dereference(physicsScene); } else { physicsScene.Logger.WarnFormat( "{0} DereferenceAnonCollisionShape. Did not find shape. {1}", LogHeader, pShape); } } } } } } }
public abstract float GetContactBreakingThreshold(BulletShape shape, float defaultFactor);
// The creation of a mesh or hull can fail if an underlying asset is not available. // There are two cases: 1) the asset is not in the cache and it needs to be fetched; // and 2) the asset cannot be converted (like failed decompression of JPEG2000s). // The first case causes the asset to be fetched. The second case requires // us to not loop forever. // Called after creating a physical mesh or hull. If the physical shape was created, // just return. public static BulletShape VerifyMeshCreated(BSScene physicsScene, BulletShape newShape, BSPhysObject prim) { // If the shape was successfully created, nothing more to do if (newShape.HasPhysicalShape) return newShape; // VerifyMeshCreated is called after trying to create the mesh. If we think the asset had been // fetched but we end up here again, the meshing of the asset must have failed. // Prevent trying to keep fetching the mesh by declaring failure. if (prim.PrimAssetState == BSPhysObject.PrimAssetCondition.Fetched) { prim.PrimAssetState = BSPhysObject.PrimAssetCondition.FailedMeshing; physicsScene.Logger.WarnFormat("{0} Fetched asset would not mesh. prim={1}, texture={2}", LogHeader, UsefulPrimInfo(physicsScene, prim), prim.BaseShape.SculptTexture); physicsScene.DetailLog("{0},BSShape.VerifyMeshCreated,setFailed,prim={1},tex={2}", prim.LocalID, UsefulPrimInfo(physicsScene, prim), prim.BaseShape.SculptTexture); } else { // If this mesh has an underlying asset and we have not failed getting it before, fetch the asset if (prim.BaseShape.SculptEntry && prim.PrimAssetState != BSPhysObject.PrimAssetCondition.FailedAssetFetch && prim.PrimAssetState != BSPhysObject.PrimAssetCondition.Waiting && prim.BaseShape.SculptTexture != OMV.UUID.Zero ) { physicsScene.DetailLog("{0},BSShapeCollection.VerifyMeshCreated,fetchAsset", prim.LocalID); // Multiple requestors will know we're waiting for this asset prim.PrimAssetState = BSPhysObject.PrimAssetCondition.Waiting; BSPhysObject xprim = prim; Util.FireAndForget(delegate { BSPhysObject yprim = xprim; // probably not necessary, but, just in case. physicsScene.Scene.AssetService.Get(yprim.BaseShape.SculptTexture.ToString(), null, delegate(string id, Object sender, AssetBase asset) { bool assetFound = false; string mismatchIDs = String.Empty; // DEBUG DEBUG if (asset != null && yprim.BaseShape.SculptEntry) { if (yprim.BaseShape.SculptTexture == asset.ID) { yprim.BaseShape.SculptData = asset.Data; // This will cause the prim to see that the filler shape is not the right // one and try again to build the object. // No race condition with the normal shape setting since the rebuild is at taint time. yprim.ForceBodyShapeRebuild(false /* inTaintTime */); assetFound = true; } else { mismatchIDs = yprim.BaseShape.SculptTexture + "/" + asset.ID; } } if (assetFound) yprim.PrimAssetState = BSPhysObject.PrimAssetCondition.Fetched; else yprim.PrimAssetState = BSPhysObject.PrimAssetCondition.FailedAssetFetch; physicsScene.DetailLog("{0},BSShapeCollection,fetchAssetCallback,found={1},isSculpt={2},ids={3}", yprim.LocalID, assetFound, yprim.BaseShape.SculptEntry, mismatchIDs); }); }); } else { if (prim.PrimAssetState == BSPhysObject.PrimAssetCondition.FailedAssetFetch) { physicsScene.Logger.WarnFormat("{0} Mesh failed to fetch asset. obj={1}, texture={2}", LogHeader, prim.PhysObjectName, prim.BaseShape.SculptTexture); } } } // While we wait for the mesh defining asset to be loaded, stick in a simple box for the object. BSShape fillShape = BSShapeNative.GetReference(physicsScene, prim, BSPhysicsShapeType.SHAPE_BOX, FixedShapeKey.KEY_BOX); physicsScene.DetailLog("{0},BSShape.VerifyMeshCreated,boxTempShape", prim.LocalID); return fillShape.physShapeInfo; }
public abstract bool IsPolyhedral(BulletShape shape);
// Code that uses the mesher to create the index/vertices info for a trimesh shape. // This is used by the passed 'makeShape' call to create the Bullet mesh shape. // The actual build call is passed so this logic can be used by several of the shapes that use a // simple mesh as their base shape. public static BulletShape CreatePhysicalMeshShape(BSScene physicsScene, BSPhysObject prim, UInt64 newMeshKey, PrimitiveBaseShape pbs, OMV.Vector3 size, float lod, CreateShapeCall makeShape) { BulletShape newShape = new BulletShape(); IMesh meshData; lock (physicsScene.mesher) { meshData = physicsScene.mesher.CreateMesh(prim.PhysObjectName, pbs, size, lod, false, // say it is not physical so a bounding box is not built false // do not cache the mesh and do not use previously built versions ); } if (meshData != null) { if (prim.PrimAssetState == BSPhysObject.PrimAssetCondition.Fetched) { // Release the fetched asset data once it has been used. pbs.SculptData = new byte[0]; prim.PrimAssetState = BSPhysObject.PrimAssetCondition.Unknown; } int[] indices = meshData.getIndexListAsInt(); int realIndicesIndex = indices.Length; float[] verticesAsFloats = meshData.getVertexListAsFloat(); if (BSParam.ShouldRemoveZeroWidthTriangles) { // Remove degenerate triangles. These are triangles with two of the vertices // are the same. This is complicated by the problem that vertices are not // made unique in sculpties so we have to compare the values in the vertex. realIndicesIndex = 0; for (int tri = 0; tri < indices.Length; tri += 3) { // Compute displacements into vertex array for each vertex of the triangle int v1 = indices[tri + 0]*3; int v2 = indices[tri + 1]*3; int v3 = indices[tri + 2]*3; // Check to see if any two of the vertices are the same if (!((verticesAsFloats[v1 + 0] == verticesAsFloats[v2 + 0] && verticesAsFloats[v1 + 1] == verticesAsFloats[v2 + 1] && verticesAsFloats[v1 + 2] == verticesAsFloats[v2 + 2]) || (verticesAsFloats[v2 + 0] == verticesAsFloats[v3 + 0] && verticesAsFloats[v2 + 1] == verticesAsFloats[v3 + 1] && verticesAsFloats[v2 + 2] == verticesAsFloats[v3 + 2]) || (verticesAsFloats[v1 + 0] == verticesAsFloats[v3 + 0] && verticesAsFloats[v1 + 1] == verticesAsFloats[v3 + 1] && verticesAsFloats[v1 + 2] == verticesAsFloats[v3 + 2])) ) { // None of the vertices of the triangles are the same. This is a good triangle; indices[realIndicesIndex + 0] = indices[tri + 0]; indices[realIndicesIndex + 1] = indices[tri + 1]; indices[realIndicesIndex + 2] = indices[tri + 2]; realIndicesIndex += 3; } } } physicsScene.DetailLog( "{0},BSShapeMesh.CreatePhysicalMesh,key={1},origTri={2},realTri={3},numVerts={4}", BSScene.DetailLogZero, newMeshKey.ToString("X"), indices.Length/3, realIndicesIndex/3, verticesAsFloats.Length/3); if (realIndicesIndex != 0) { newShape = makeShape(physicsScene.World, realIndicesIndex, indices, verticesAsFloats.Length/3, verticesAsFloats); } else { // Force the asset condition to 'failed' so we won't try to keep fetching and processing this mesh. prim.PrimAssetState = BSPhysObject.PrimAssetCondition.FailedMeshing; physicsScene.Logger.DebugFormat("{0} All mesh triangles degenerate. Prim={1}", LogHeader, UsefulPrimInfo(physicsScene, prim)); physicsScene.DetailLog("{0},BSShapeMesh.CreatePhysicalMesh,allDegenerate,key={1}", prim.LocalID, newMeshKey); } } newShape.shapeKey = newMeshKey; return newShape; }
public BSShapeCompound(BulletShape pShape) : base(pShape) { }
public abstract bool IsNonMoving(BulletShape shape);
public abstract bool IsCompound(BulletShape shape);
public abstract bool IsInfinite(BulletShape shape);
public abstract Vector3 GetLocalScaling(BulletShape shape);
public abstract int GetShapeType(BulletShape shape);
public abstract float GetMargin(BulletShape shape);
public static bool TryGetCompoundByPtr(BulletShape pShape, out BSShapeCompound outCompound) { lock (CompoundShapes) { string addr = pShape.AddrString; return CompoundShapes.TryGetValue(addr, out outCompound); } }
public BSShapeConvexHull(BulletShape pShape) : base(pShape) { }
public BSShape(BulletShape pShape) { referenceCount = 1; lastReferenced = DateTime.Now; physShapeInfo = pShape; shapeInfo = new ShapeInfoInfo(); }
public BSShapeNative(BulletShape pShape) : base(pShape) { }
// Loop through all the known meshes and return the description based on the physical address. public static bool TryGetMeshByPtr(BulletShape pShape, out BSShapeMesh outMesh) { bool ret = false; BSShapeMesh foundDesc = null; lock (Meshes) { foreach (BSShapeMesh sm in Meshes.Values) { if (sm.physShapeInfo.ReferenceSame(pShape)) { foundDesc = sm; ret = true; break; } } } outMesh = foundDesc; return ret; }
// Return 'true' if this and other refer to the same physical object public virtual bool ReferenceSame(BulletShape xx) { return(false); }
public BSShapeHull(BulletShape pShape) : base(pShape) { }
// 'physicalUpdate' is true if these changes came directly from the physics engine. Don't need to rebuild then. // Called at taint-time. public override void UpdateProperties(UpdatedProperties whichUpdated, BSPrimLinkable updated) { if (!LinksetRoot.IsPhysicallyActive) { // No reason to do this physical stuff for static linksets. DetailLog("{0},BSLinksetCompound.UpdateProperties,notPhysical", LinksetRoot.LocalID); return; } // The user moving a child around requires the rebuilding of the linkset compound shape // One problem is this happens when a border is crossed -- the simulator implementation // stores the position into the group which causes the move of the object // but it also means all the child positions get updated. // What would cause an unnecessary rebuild so we make sure the linkset is in a // region before bothering to do a rebuild. if (!IsRoot(updated) && PhysicsScene.TerrainManager.IsWithinKnownTerrain(LinksetRoot.RawPosition)) { // If a child of the linkset is updating only the position or rotation, that can be done // without rebuilding the linkset. // If a handle for the child can be fetch, we update the child here. If a rebuild was // scheduled by someone else, the rebuild will just replace this setting. bool updatedChild = false; // Anything other than updating position or orientation usually means a physical update // and that is caused by us updating the object. if ((whichUpdated & ~(UpdatedProperties.Position | UpdatedProperties.Orientation)) == 0) { // Find the physical instance of the child if (!RebuildScheduled && !LinksetRoot.IsIncomplete && LinksetRoot.PhysShape.HasPhysicalShape && PhysicsScene.PE.IsCompound(LinksetRoot.PhysShape.physShapeInfo)) { // It is possible that the linkset is still under construction and the child is not yet // inserted into the compound shape. A rebuild of the linkset in a pre-step action will // build the whole thing with the new position or rotation. // The index must be checked because Bullet references the child array but does no validity // checking of the child index passed. int numLinksetChildren = PhysicsScene.PE.GetNumberOfCompoundChildren(LinksetRoot.PhysShape.physShapeInfo); if (updated.LinksetChildIndex < numLinksetChildren) { BulletShape linksetChildShape = PhysicsScene.PE.GetChildShapeFromCompoundShapeIndex(LinksetRoot.PhysShape.physShapeInfo, updated.LinksetChildIndex); if (linksetChildShape.HasPhysicalShape) { // Found the child shape within the compound shape PhysicsScene.PE.UpdateChildTransform(LinksetRoot.PhysShape.physShapeInfo, updated.LinksetChildIndex, updated.RawPosition - LinksetRoot.RawPosition, updated.RawOrientation * OMV.Quaternion.Inverse(LinksetRoot.RawOrientation), true /* shouldRecalculateLocalAabb */); updatedChild = true; DetailLog( "{0},BSLinksetCompound.UpdateProperties,changeChildPosRot,whichUpdated={1},pos={2},rot={3}", updated.LocalID, whichUpdated, updated.RawPosition, updated.RawOrientation); } else // DEBUG DEBUG { // DEBUG DEBUG DetailLog( "{0},BSLinksetCompound.UpdateProperties,couldNotUpdateChild,noChildShape,shape={1}", updated.LocalID, linksetChildShape); } // DEBUG DEBUG } else // DEBUG DEBUG { // DEBUG DEBUG // the child is not yet in the compound shape. This is non-fatal. DetailLog( "{0},BSLinksetCompound.UpdateProperties,couldNotUpdateChild,childNotInCompoundShape,numChildren={1},index={2}", updated.LocalID, numLinksetChildren, updated.LinksetChildIndex); } // DEBUG DEBUG } else // DEBUG DEBUG { // DEBUG DEBUG DetailLog("{0},BSLinksetCompound.UpdateProperties,couldNotUpdateChild,noBodyOrNotCompound", updated.LocalID); } // DEBUG DEBUG if (!updatedChild) { // If couldn't do the individual child, the linkset needs a rebuild to incorporate the new child info. // Note: there are several ways through this code that will not update the child if // the linkset is being rebuilt. In this case, scheduling a rebuild is a NOOP since // there will already be a rebuild scheduled. DetailLog( "{0},BSLinksetCompound.UpdateProperties,couldNotUpdateChild.schedulingRebuild,whichUpdated={1}", updated.LocalID, whichUpdated); Refresh(updated); } } } }
// Loop through all the known hulls and return the description based on the physical address. public static bool TryGetHullByPtr(BulletShape pShape, out BSShapeHull outHull) { bool ret = false; BSShapeHull foundDesc = null; lock (Hulls) { foreach (BSShapeHull sh in Hulls.Values) { if (sh.physShapeInfo.ReferenceSame(pShape)) { foundDesc = sh; ret = true; break; } } } outHull = foundDesc; return ret; }
// Create terrain mesh from a heightmap. public BSTerrainMesh(BSScene physicsScene, Vector3 regionBase, uint id, float[] initialMap, Vector3 minCoords, Vector3 maxCoords) : base(physicsScene, regionBase, id) { int indicesCount; int[] indices; int verticesCount; float[] vertices; m_savedHeightMap = initialMap; m_sizeX = (int)(maxCoords.X - minCoords.X); m_sizeY = (int)(maxCoords.Y - minCoords.Y); bool meshCreationSuccess = false; if (BSParam.TerrainMeshMagnification == 1) { // If a magnification of one, use the old routine that is tried and true. meshCreationSuccess = BSTerrainMesh.ConvertHeightmapToMesh(PhysicsScene, initialMap, m_sizeX, m_sizeY, // input size Vector3.Zero, // base for mesh out indicesCount, out indices, out verticesCount, out vertices); } else { // Other magnifications use the newer routine meshCreationSuccess = BSTerrainMesh.ConvertHeightmapToMesh2(PhysicsScene, initialMap, m_sizeX, m_sizeY, // input size BSParam.TerrainMeshMagnification, physicsScene.TerrainManager.WorldMax, Vector3.Zero, // base for mesh out indicesCount, out indices, out verticesCount, out vertices); } if (!meshCreationSuccess) { // DISASTER!! PhysicsScene.DetailLog("{0},BSTerrainMesh.create,failedConversionOfHeightmap,id={1}", BSScene.DetailLogZero, ID); PhysicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh! base={1}", LogHeader, TerrainBase); // Something is very messed up and a crash is in our future. return; } PhysicsScene.DetailLog("{0},BSTerrainMesh.create,meshid,id={1},indices={2},indSz={3},vertices={4},vertSz={5}", BSScene.DetailLogZero, ID, indicesCount, indices.Length, verticesCount, vertices.Length); m_terrainShape = PhysicsScene.PE.CreateMeshShape(PhysicsScene.World, indicesCount, indices, verticesCount, vertices); if (!m_terrainShape.HasPhysicalShape) { // DISASTER!! PhysicsScene.DetailLog("{0},BSTerrainMesh.create,failedCreationOfShape,id={1}", BSScene.DetailLogZero, ID); PhysicsScene.Logger.ErrorFormat("{0} Failed creation of terrain mesh! base={1}", LogHeader, TerrainBase); // Something is very messed up and a crash is in our future. return; } Vector3 pos = regionBase; Quaternion rot = Quaternion.Identity; m_terrainBody = PhysicsScene.PE.CreateBodyWithDefaultMotionState(m_terrainShape, ID, pos, rot); if (!m_terrainBody.HasPhysicalBody) { // DISASTER!! PhysicsScene.Logger.ErrorFormat("{0} Failed creation of terrain body! base={1}", LogHeader, TerrainBase); // Something is very messed up and a crash is in our future. return; } physicsScene.PE.SetShapeCollisionMargin(m_terrainShape, BSParam.TerrainCollisionMargin); // Set current terrain attributes PhysicsScene.PE.SetFriction(m_terrainBody, BSParam.TerrainFriction); PhysicsScene.PE.SetHitFraction(m_terrainBody, BSParam.TerrainHitFraction); PhysicsScene.PE.SetRestitution(m_terrainBody, BSParam.TerrainRestitution); PhysicsScene.PE.SetContactProcessingThreshold(m_terrainBody, BSParam.TerrainContactProcessingThreshold); PhysicsScene.PE.SetCollisionFlags(m_terrainBody, CollisionFlags.CF_STATIC_OBJECT); // Static objects are not very massive. PhysicsScene.PE.SetMassProps(m_terrainBody, 0.1f, Vector3.Zero); // Put the new terrain to the world of physical objects PhysicsScene.PE.AddObjectToWorld(PhysicsScene.World, m_terrainBody); // Redo its bounding box now that it is in the world PhysicsScene.PE.UpdateSingleAabb(PhysicsScene.World, m_terrainBody); m_terrainBody.collisionType = CollisionType.Terrain; m_terrainBody.ApplyCollisionMask(PhysicsScene); if (BSParam.UseSingleSidedMeshes) { PhysicsScene.DetailLog("{0},BSTerrainMesh.settingCustomMaterial,id={1}", BSScene.DetailLogZero, id); PhysicsScene.PE.AddToCollisionFlags(m_terrainBody, CollisionFlags.CF_CUSTOM_MATERIAL_CALLBACK); } // Make it so the terrain will not move or be considered for movement. PhysicsScene.PE.ForceActivationState(m_terrainBody, ActivationState.DISABLE_SIMULATION); }
public abstract void SetShapeCollisionMargin(BulletShape shape, float margin);