示例#1
0
        /// <summary>
        /// It uses the sieve of Eratosthenes to discard several composite numbers in
        /// some appropriate range (at the moment [this, this + 1024]).
        /// <para>After this process it applies the Miller-Rabin test to the numbers that were not discarded in the sieve.</para>
        /// </summary>
        internal static BigInteger NextProbablePrime(BigInteger X)
        {
            // PRE: n >= 0
            int i, j;
            int certainty;
            int gapSize = 1024; // for searching of the next probable prime number

            int[]      modules     = new int[m_primes.Length];
            bool[]     isDivisible = new bool[gapSize];
            BigInteger startPoint;
            BigInteger probPrime;

            // If n < "last prime of table" searches next prime in the table
            if ((X.m_numberLength == 1) && (X.m_digits[0] >= 0) && (X.m_digits[0] < m_primes[m_primes.Length - 1]))
            {
                for (i = 0; X.m_digits[0] >= m_primes[i]; i++)
                {
                    ;
                }

                return(m_biPrimes[i]);
            }
            // Creates a "N" enough big to hold the next probable prime Note that: N < "next prime" < 2*N
            startPoint = new BigInteger(1, X.m_numberLength, new int[X.m_numberLength + 1]);
            Array.Copy(X.m_digits, 0, startPoint.m_digits, 0, X.m_numberLength);

            // To fix N to the "next odd number"
            if (X.TestBit(0))
            {
                Elementary.InplaceAdd(startPoint, 2);
            }
            else
            {
                startPoint.m_digits[0] |= 1;
            }

            // To set the improved certainly of Miller-Rabin
            j = startPoint.BitLength;
            for (certainty = 2; j < BITS[certainty]; certainty++)
            {
                ;
            }
            // To calculate modules: N mod p1, N mod p2, ... for first primes.
            for (i = 0; i < m_primes.Length; i++)
            {
                modules[i] = Division.Remainder(startPoint, m_primes[i]) - gapSize;
            }

            while (true)
            {
                // At this point, all numbers in the gap are initialized as probably primes
                for (int k = 0; k < isDivisible.Length; k++)
                {
                    isDivisible[k] = false;
                }

                // To discard multiples of first primes
                for (i = 0; i < m_primes.Length; i++)
                {
                    modules[i] = (modules[i] + gapSize) % m_primes[i];
                    j          = (modules[i] == 0) ? 0 : (m_primes[i] - modules[i]);

                    for (; j < gapSize; j += m_primes[i])
                    {
                        isDivisible[j] = true;
                    }
                }
                // To execute Miller-Rabin for non-divisible numbers by all first
                // primes
                for (j = 0; j < gapSize; j++)
                {
                    if (!isDivisible[j])
                    {
                        probPrime = startPoint.Copy();
                        Elementary.InplaceAdd(probPrime, j);

                        if (MillerRabin(probPrime, certainty))
                        {
                            return(probPrime);
                        }
                    }
                }
                Elementary.InplaceAdd(startPoint, gapSize);
            }
        }
示例#2
0
        /// <summary>
        /// Calculates x.modInverse(p) Based on: Savas, E; Koc, C "The Montgomery Modular Inverse - Revised"
        /// </summary>
        ///
        /// <param name="X">BigInteger X</param>
        /// <param name="P">BigInteger P</param>
        ///
        /// <returns>Returns <c>1/X Mod M</c></returns>
        internal static BigInteger ModInverseMontgomery(BigInteger X, BigInteger P)
        {
            // ZERO hasn't inverse
            if (X.m_sign == 0)
            {
                throw new ArithmeticException("BigInteger not invertible!");
            }

            // montgomery inverse require even modulo
            if (!P.TestBit(0))
            {
                return(ModInverseLorencz(X, P));
            }

            int m = P.m_numberLength * 32;
            // PRE: a \in [1, p - 1]
            BigInteger u, v, r, s;

            u = P.Copy();  // make copy to use inplace method
            v = X.Copy();

            int max = System.Math.Max(v.m_numberLength, u.m_numberLength);

            r             = new BigInteger(1, 1, new int[max + 1]);
            s             = new BigInteger(1, 1, new int[max + 1]);
            s.m_digits[0] = 1;

            int k    = 0;
            int lsbu = u.LowestSetBit;
            int lsbv = v.LowestSetBit;
            int toShift;

            if (lsbu > lsbv)
            {
                BitLevel.InplaceShiftRight(u, lsbu);
                BitLevel.InplaceShiftRight(v, lsbv);
                BitLevel.InplaceShiftLeft(r, lsbv);
                k += lsbu - lsbv;
            }
            else
            {
                BitLevel.InplaceShiftRight(u, lsbu);
                BitLevel.InplaceShiftRight(v, lsbv);
                BitLevel.InplaceShiftLeft(s, lsbu);
                k += lsbv - lsbu;
            }

            r.m_sign = 1;
            while (v.Signum() > 0)
            {
                // INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0))

                while (u.CompareTo(v) > BigInteger.EQUALS)
                {
                    Elementary.InplaceSubtract(u, v);
                    toShift = u.LowestSetBit;
                    BitLevel.InplaceShiftRight(u, toShift);
                    Elementary.InplaceAdd(r, s);
                    BitLevel.InplaceShiftLeft(s, toShift);
                    k += toShift;
                }

                while (u.CompareTo(v) <= BigInteger.EQUALS)
                {
                    Elementary.InplaceSubtract(v, u);

                    if (v.Signum() == 0)
                    {
                        break;
                    }

                    toShift = v.LowestSetBit;
                    BitLevel.InplaceShiftRight(v, toShift);
                    Elementary.InplaceAdd(s, r);
                    BitLevel.InplaceShiftLeft(r, toShift);
                    k += toShift;
                }
            }

            // in u is stored the gcd
            if (!u.IsOne())
            {
                throw new ArithmeticException("BigInteger not invertible.");
            }

            if (r.CompareTo(P) >= BigInteger.EQUALS)
            {
                Elementary.InplaceSubtract(r, P);
            }

            r = P.Subtract(r);

            // Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module)
            int n1 = CalcN(P);

            if (k > m)
            {
                r = MonPro(r, BigInteger.One, P, n1);
                k = k - m;
            }

            r = MonPro(r, BigInteger.GetPowerOfTwo(m - k), P, n1);

            return(r);
        }