示例#1
0
        /// <summary>
        /// assume that the input matrix is purely binary, i.e. zeros and ones
        /// </summary>
        /// <param name="matrix">
        /// </param>
        /// <returns>
        /// The <see cref="ArrayList"/>.
        /// </returns>
        public static ArrayList ShapesDetect(double[,] matrix)
        {
            var shapes = new ArrayList();
            var random = new RandomNumber();

            int mHeight = matrix.GetLength(0);
            int mWidth  = matrix.GetLength(1);

            for (int x = 5; x < mWidth; x++)
            {
                for (int y = 0; y < mHeight - 1; y++)
                {
                    if (matrix[y, x] != 1.0)
                    {
                        continue; // not in an object
                    }

                    if (matrix[y + 1, x] != 1.0)
                    {
                        y++;
                        continue; // shape must be > 2 pixels wide
                    }

                    // explore shape in y dimension
                    int rowWidth = 0;
                    while (rowWidth + y < mHeight && matrix[y + rowWidth, x] == 1.0)
                    {
                        rowWidth++;
                    }

                    rowWidth--;                       // back off one place
                    int yCentre = y + (rowWidth / 2); // position in centre of shape

                    if (InExistingShape(yCentre, x, shapes))
                    {
                        continue;
                    }

                    // explore shape in x dimension
                    int upDist = 0;
                    while (x + upDist < mWidth && matrix[yCentre, x + upDist] == 1.0)
                    {
                        upDist++;
                    }

                    if (matrix[yCentre, x + 1] == 0.0)
                    {
                        upDist = 1;
                    }

                    int dnDist = 0;
                    while (x - dnDist > 0 && matrix[yCentre, x - dnDist] == 1.0)
                    {
                        dnDist++;
                    }

                    dnDist--; // pull back one

                    // initialise possible shape.
                    int col1     = x - dnDist + 1;
                    int colWidth = upDist + dnDist - 2;
                    var shape    = new Oblong(y, col1, y + rowWidth - 1, col1 + colWidth - 1);
                    shape.RandomNumber = random.GetInt(200); // set random number for id and color purposes

                    int[] centroid = shape.Centroid();

                    // LoggedConsole.WriteLine("Centroid=" + centroid[0] + ", " + centroid[1]);
                    // LoggedConsole.WriteLine("RowWidth=" + shape.RowWidth + "  ColWidth=" + shape.ColWidth);
                    shapes.Add(shape);

                    // more to end of shape
                    y = shape.RowBottom;
                }

                x += 4; // jump through 5 lines at a time.
            }

            LoggedConsole.WriteLine("Number of shapes=" + shapes.Count);

            shapes = ProcessShapes(shapes);

            // Console.ReadLine();
            return(shapes);
        }
 public RandomVariable(double mean, double SD, int seed)
 {
     this.mean = mean;
     this.SD   = SD;
     this.R    = new RandomNumber(seed);
 }
 /// <summary>
 /// CONSTRUCTOR
 /// </summary>
 public RandomVariable()
 {
     this.R = new RandomNumber();
 }
 /// <summary>
 /// CONSTRUCTOR
 /// </summary>
 /// <param name="mean"></param>
 /// <param name="SD"></param>
 public RandomVariable(double mean, double SD)
 {
     this.mean = mean;
     this.SD   = SD;
     this.R    = new RandomNumber();
 }
示例#5
0
        /// <summary>
        /// Runs a test of the ScanArrayForGratingPattern() method.
        /// First constructs a grating signal, then embeds it in longer noise signal
        /// The grating is defined by a period and the number of cycles.
        /// The search is repeated many iterations in order to get everage accuracy.
        /// Accuracy depends on relative levels of noise gain and signal gain i.e. the SNR.
        /// </summary>
        public static void Test_ScanArrayForGridPattern1()
        {
            int n = 500;

            double[] v             = new double[n];
            var      rn            = new RandomNumber();
            int      maxIterations = 1000;
            int      count         = 0;

            double[] template = { 1.0, 0.0, 1.1, 0.1, 1.2, 0.2, 1.3, 0.3 };
            //double[] template = { 1.5, 0.2, 0.8, 0.1, 0.9, 0.0, 0.8, 0.0 };
            //double[] template = { 2.0, 0.0, 0.7, 0.0, 0.6, 0.0, 0.7, 0.0 };
            //double[] template = { 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

            int numberOfCycles = 4;
            int cyclePeriod    = 64; //MUST BE AN EVEN NUMBER!!
            int signalLength   = numberOfCycles * cyclePeriod;

            double[] signal = template;
            if (cyclePeriod > 2)
            {
                int halfPeriod = cyclePeriod / 2;
                signal = new double[signalLength];
                for (int x = 0; x < template.Length; x++)
                {
                    for (int p = 0; p < halfPeriod; p++)
                    {
                        signal[(x * halfPeriod) + p] = template[x];                                  //transfer signal
                    }
                    if (cyclePeriod > 6)
                    {
                        signal = DataTools.filterMovingAverage(signal, halfPeriod - 1);
                    }
                    signal = DataTools.normalise(signal);
                } //for
            }     // if (cyclePeriod > 2)
            DataTools.writeBarGraph(signal);

            double bgNoiseGain           = 0.1;
            double signalGain            = 0.13;
            int    locationOfSignalStart = 100;
            int    searchStep            = 5;
            int    errorTolerance        = cyclePeriod;

            if (errorTolerance < searchStep)
            {
                errorTolerance = searchStep + 1;
            }

            //run many repeats of the detection to determine its accuracy. Noise in signal means result varies from iteration to iteration.
            for (int iter = 0; iter < maxIterations; iter++)
            {
                //construct background signal.
                for (int i = 0; i < n; i++)
                {
                    v[i] = rn.GetDouble() * bgNoiseGain;
                }
                //add in the signal
                for (int i = 0; i < signal.Length; i++)
                {
                    v[locationOfSignalStart + i] += (signal[i] * signalGain);
                }

                //detect grating in signal
                var output      = ScanArrayForGratingPattern(v, searchStep, numberOfCycles, cyclePeriod);
                int maxLocation = DataTools.GetMaxIndex(output);
                if ((maxLocation > (locationOfSignalStart - errorTolerance)) && (maxLocation < (locationOfSignalStart + errorTolerance)))
                {
                    Console.WriteLine("score = {0:f2}", output[maxLocation]);
                    count++;
                }
            }
            Console.WriteLine("% correct = {0:f1}", 100 * count / (double)maxIterations);
        }