public static Tensor softmax_cross_entropy_with_logits_v2_helper(Tensor labels, Tensor logits, int axis = -1, string name = null) { return(Python.with(ops.name_scope(name, "softmax_cross_entropy_with_logits", new { }), scope => { var precise_logits = logits; var input_rank = array_ops.rank(precise_logits); var shape = logits.getShape(); if (axis != -1) { throw new NotImplementedException("softmax_cross_entropy_with_logits_v2_helper axis != -1"); } var input_shape = array_ops.shape(precise_logits); // Do the actual op computation. // The second output tensor contains the gradients. We use it in // _CrossEntropyGrad() in nn_grad but not here. var(cost, unused_backprop) = gen_nn_ops.softmax_cross_entropy_with_logits(precise_logits, labels, name: name); // The output cost shape should be the input minus axis. var output_shape = array_ops.slice(input_shape, new int[] { 0 }, new Tensor[] { math_ops.subtract(input_rank, 1) }); cost = array_ops.reshape(cost, output_shape); return cost; })); }
private void _init_from_args(object initial_value, bool trainable = true, List <string> collections = null, bool validate_shape = true, string caching_device = "", string name = null, TF_DataType dtype = TF_DataType.DtInvalid) { if (initial_value is null) { throw new ValueError("initial_value must be specified."); } var init_from_fn = initial_value.GetType().Name == "Func`1"; if (collections == null) { collections = new List <string> { ops.GraphKeys.GLOBAL_VARIABLES }; } // Store the graph key so optimizers know how to only retrieve variables from // this graph. _graph_key = ops.get_default_graph()._graph_key; _trainable = trainable; if (!collections.Contains(ops.GraphKeys.TRAINABLE_VARIABLES)) { collections.Add(ops.GraphKeys.TRAINABLE_VARIABLES); } ops.init_scope(); var values = init_from_fn ? new object[0] : new object[] { initial_value }; with(new ops.name_scope(name, "Variable", values), scope => { name = scope; if (init_from_fn) { // Use attr_scope and device(None) to simulate the behavior of // colocate_with when the variable we want to colocate with doesn't // yet exist. string true_name = ops._name_from_scope_name(name); var attr = new AttrValue { List = new AttrValue.Types.ListValue() }; attr.List.S.Add(ByteString.CopyFromUtf8($"loc:{true_name}")); with(new ops.name_scope("Initializer"), scope2 => { _initial_value = (initial_value as Func <Tensor>)(); _initial_value = ops.convert_to_tensor(_initial_value, name: "initial_value", dtype: dtype); _variable = state_ops.variable_op_v2(_initial_value.shape, _initial_value.dtype.as_base_dtype(), name: name); }); } // Or get the initial value from a Tensor or Python object. else { _initial_value = ops.convert_to_tensor(initial_value, name: "initial_value"); var shape = _initial_value.shape; dtype = _initial_value.dtype; _variable = gen_state_ops.variable_v2(shape, dtype.as_base_dtype(), scope); } // Manually overrides the variable's shape with the initial value's. if (validate_shape) { var initial_value_shape = _initial_value.getShape(); if (!initial_value_shape.is_fully_defined()) { throw new ValueError($"initial_value must have a shape specified: {_initial_value}"); } } // If 'initial_value' makes use of other variables, make sure we don't // have an issue if these other variables aren't initialized first by // using their initialized_value() method. var _initial_value2 = _try_guard_against_uninitialized_dependencies(_initial_value); _initializer_op = gen_state_ops.assign(_variable, _initial_value2, validate_shape).op; if (!String.IsNullOrEmpty(caching_device)) { } else { ops.colocate_with(_initializer_op); _snapshot = gen_array_ops.identity(_variable, name = "read"); } ops.add_to_collections(collections, this); }); }