示例#1
0
        public static Tensor softmax_cross_entropy_with_logits_v2_helper(Tensor labels,
                                                                         Tensor logits,
                                                                         int axis    = -1,
                                                                         string name = null)
        {
            return(Python.with(ops.name_scope(name, "softmax_cross_entropy_with_logits", new { }), scope =>
            {
                var precise_logits = logits;
                var input_rank = array_ops.rank(precise_logits);
                var shape = logits.getShape();

                if (axis != -1)
                {
                    throw new NotImplementedException("softmax_cross_entropy_with_logits_v2_helper axis != -1");
                }

                var input_shape = array_ops.shape(precise_logits);

                // Do the actual op computation.
                // The second output tensor contains the gradients.  We use it in
                // _CrossEntropyGrad() in nn_grad but not here.

                var(cost, unused_backprop) = gen_nn_ops.softmax_cross_entropy_with_logits(precise_logits, labels, name: name);

                // The output cost shape should be the input minus axis.
                var output_shape = array_ops.slice(input_shape,
                                                   new int[] { 0 },
                                                   new Tensor[] { math_ops.subtract(input_rank, 1) });

                cost = array_ops.reshape(cost, output_shape);

                return cost;
            }));
        }
示例#2
0
        private void _init_from_args(object initial_value,
                                     bool trainable            = true,
                                     List <string> collections = null,
                                     bool validate_shape       = true,
                                     string caching_device     = "",
                                     string name       = null,
                                     TF_DataType dtype = TF_DataType.DtInvalid)
        {
            if (initial_value is null)
            {
                throw new ValueError("initial_value must be specified.");
            }

            var init_from_fn = initial_value.GetType().Name == "Func`1";

            if (collections == null)
            {
                collections = new List <string> {
                    ops.GraphKeys.GLOBAL_VARIABLES
                };
            }

            // Store the graph key so optimizers know how to only retrieve variables from
            // this graph.
            _graph_key = ops.get_default_graph()._graph_key;

            _trainable = trainable;
            if (!collections.Contains(ops.GraphKeys.TRAINABLE_VARIABLES))
            {
                collections.Add(ops.GraphKeys.TRAINABLE_VARIABLES);
            }

            ops.init_scope();
            var values = init_from_fn ? new object[0] : new object[] { initial_value };

            with(new ops.name_scope(name, "Variable", values), scope =>
            {
                name = scope;
                if (init_from_fn)
                {
                    // Use attr_scope and device(None) to simulate the behavior of
                    // colocate_with when the variable we want to colocate with doesn't
                    // yet exist.
                    string true_name = ops._name_from_scope_name(name);
                    var attr         = new AttrValue
                    {
                        List = new AttrValue.Types.ListValue()
                    };
                    attr.List.S.Add(ByteString.CopyFromUtf8($"loc:{true_name}"));
                    with(new ops.name_scope("Initializer"), scope2 =>
                    {
                        _initial_value = (initial_value as Func <Tensor>)();
                        _initial_value = ops.convert_to_tensor(_initial_value, name: "initial_value", dtype: dtype);
                        _variable      = state_ops.variable_op_v2(_initial_value.shape, _initial_value.dtype.as_base_dtype(), name: name);
                    });
                }
                // Or get the initial value from a Tensor or Python object.
                else
                {
                    _initial_value = ops.convert_to_tensor(initial_value, name: "initial_value");

                    var shape = _initial_value.shape;
                    dtype     = _initial_value.dtype;
                    _variable = gen_state_ops.variable_v2(shape, dtype.as_base_dtype(), scope);
                }

                // Manually overrides the variable's shape with the initial value's.
                if (validate_shape)
                {
                    var initial_value_shape = _initial_value.getShape();
                    if (!initial_value_shape.is_fully_defined())
                    {
                        throw new ValueError($"initial_value must have a shape specified: {_initial_value}");
                    }
                }

                // If 'initial_value' makes use of other variables, make sure we don't
                // have an issue if these other variables aren't initialized first by
                // using their initialized_value() method.
                var _initial_value2 = _try_guard_against_uninitialized_dependencies(_initial_value);

                _initializer_op = gen_state_ops.assign(_variable, _initial_value2, validate_shape).op;

                if (!String.IsNullOrEmpty(caching_device))
                {
                }
                else
                {
                    ops.colocate_with(_initializer_op);

                    _snapshot = gen_array_ops.identity(_variable, name = "read");
                }

                ops.add_to_collections(collections, this);
            });
        }