示例#1
0
        public void CopyToArray(Array array)
        {
            var elementType = DTypeBuilder.FromCLRType(array.GetType().GetElementType());

            if (!this.IsContiguous())
            {
                throw new InvalidOperationException("Tensor must be contiguous to copy from CLR array");
            }
            if (this.ElementCount() != array.LongLength)
            {
                throw new InvalidOperationException("Tensor and array must have the same number of elements");
            }
            if (this.ElementType != elementType)
            {
                throw new InvalidOperationException("Tensor and array must have the same element types");
            }

            var handle = GCHandle.Alloc(array, GCHandleType.Pinned);

            try
            {
                var length = Buffer.ByteLength(array);
                this.Storage.CopyFromStorage(handle.AddrOfPinnedObject(), this.StorageOffset, length);
            }
            finally
            {
                handle.Free();
            }
        }
示例#2
0
        public static Tensor FromArray(IAllocator allocator, Array array)
        {
            // From the CLI spec(section 8.9.1):
            // Array elements shall be laid out within the array object in row - major order
            // (i.e., the elements associated with the rightmost array dimension shall be laid out contiguously from lowest to highest index).
            // The actual storage allocated for each array element can include platform - specific padding.

            // This is already in the order we want - and here we will (potentially incorrectly) assume that there is no
            // 'platform-specific padding'. This appears to be a reasonable assumption on both CLR and Mono.
            // Assuming no platform-specific padding allows us to use memcpy instead of iterating and copying each element

            var elementType = DTypeBuilder.FromCLRType(array.GetType().GetElementType());

            var dimSizes = Enumerable.Range(0, array.Rank).Select(x => (long)array.GetLength(x)).ToArray();

            var result = new Tensor(allocator, elementType, dimSizes);

            result.CopyFrom(array);
            return(result);
        }