public void ReferenceTest() { int inchannels = 6, outchannels = 8, batch = 3; float[] yval = (new float[outchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray(); float[] wval = (new float[outchannels * inchannels / 2]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray(); System.Numerics.Complex[] ycval = (new System.Numerics.Complex[yval.Length / 2]) .Select((_, idx) => new System.Numerics.Complex(yval[idx * 2], yval[idx * 2 + 1])).ToArray(); System.Numerics.Complex[] wcval = (new System.Numerics.Complex[wval.Length / 2]) .Select((_, idx) => new System.Numerics.Complex(wval[idx * 2], wval[idx * 2 + 1])).ToArray(); ComplexMap0D y = new ComplexMap0D(outchannels / 2, batch, ycval); ComplexFilter0D w = new ComplexFilter0D(inchannels / 2, outchannels / 2, wcval); ComplexMap0D x = Reference(y, w); float[] x_expect = { -4.000000e-05f, 2.600000e-04f, -3.200000e-05f, 2.040000e-04f, -2.400000e-05f, 1.480000e-04f, -8.000000e-06f, 1.124000e-03f, 0.000000e+00f, 9.400000e-04f, 8.000000e-06f, 7.560000e-04f, 2.400000e-05f, 1.988000e-03f, 3.200000e-05f, 1.676000e-03f, 4.000000e-05f, 1.364000e-03f, }; float[] x_actual = x.ToArray(); AssertError.Tolerance(x_expect, x_actual, 1e-9f, 1e-5f, $"mismatch value {inchannels},{outchannels},{batch}"); }
public void ReferenceTest() { int inchannels = 6, outchannels = 8, batch = 3; float[] xval = (new float[batch * inchannels]).Select((_, idx) => idx * 1e-3f).ToArray(); float[] wval = (new float[outchannels * inchannels / 2]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray(); System.Numerics.Complex[] xcval = (new System.Numerics.Complex[xval.Length / 2]) .Select((_, idx) => new System.Numerics.Complex(xval[idx * 2], xval[idx * 2 + 1])).ToArray(); System.Numerics.Complex[] wcval = (new System.Numerics.Complex[wval.Length / 2]) .Select((_, idx) => new System.Numerics.Complex(wval[idx * 2], wval[idx * 2 + 1])).ToArray(); ComplexMap0D x = new ComplexMap0D(inchannels / 2, batch, xcval); ComplexFilter0D w = new ComplexFilter0D(inchannels / 2, outchannels / 2, wcval); ComplexMap0D y = Reference(x, w); float[] y_expect = { -5.400000e-05f, 2.930000e-04f, -3.600000e-05f, 2.030000e-04f, -1.800000e-05f, 1.130000e-04f, 0.000000e+00f, 2.300000e-05f, -3.600000e-05f, 1.031000e-03f, -1.800000e-05f, 7.250000e-04f, -2.710505e-20f, 4.190000e-04f, 1.800000e-05f, 1.130000e-04f, -1.800000e-05f, 1.769000e-03f, 0.000000e+00f, 1.247000e-03f, 1.800000e-05f, 7.250000e-04f, 3.600000e-05f, 2.030000e-04f, }; float[] y_actual = y.ToArray(); AssertError.Tolerance(y_expect, y_actual, 1e-9f, 1e-5f, $"mismatch value {inchannels},{outchannels},{batch}"); }
public void ReferenceTest() { int inchannels = 6, outchannels = 8, batch = 3; float[] xval = (new float[inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray(); float[] yval = (new float[outchannels * batch]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray(); System.Numerics.Complex[] xcval = (new System.Numerics.Complex[xval.Length / 2]) .Select((_, idx) => new System.Numerics.Complex(xval[idx * 2], xval[idx * 2 + 1])).ToArray(); System.Numerics.Complex[] ycval = (new System.Numerics.Complex[yval.Length / 2]) .Select((_, idx) => new System.Numerics.Complex(yval[idx * 2], yval[idx * 2 + 1])).ToArray(); ComplexMap0D x = new ComplexMap0D(inchannels / 2, batch, xcval); ComplexMap0D y = new ComplexMap0D(outchannels / 2, batch, ycval); ComplexFilter0D gw = Reference(x, y); float[] gw_expect = { 3.720000000e-04f, -6.300000000e-05f, 5.460000000e-04f, -6.900000000e-05f, 7.200000000e-04f, -7.500000000e-05f, 2.940000000e-04f, -5.700000000e-05f, 4.440000000e-04f, -6.300000000e-05f, 5.940000000e-04f, -6.900000000e-05f, 2.160000000e-04f, -5.100000000e-05f, 3.420000000e-04f, -5.700000000e-05f, 4.680000000e-04f, -6.300000000e-05f, 1.380000000e-04f, -4.500000000e-05f, 2.400000000e-04f, -5.100000000e-05f, 3.420000000e-04f, -5.700000000e-05f, }; float[] gw_actual = gw.ToArray(); AssertError.Tolerance(gw_expect, gw_actual, 1e-9f, 1e-5f, $"mismatch value {inchannels},{outchannels},{batch}"); }
public static ComplexFilter0D Reference(ComplexMap0D x, ComplexMap0D gy) { int inchannels = x.Channels, outchannels = gy.Channels, batch = x.Batch; ComplexFilter0D w = new ComplexFilter0D(inchannels, outchannels); Func <System.Numerics.Complex, System.Numerics.Complex, System.Numerics.Complex> mul_grad = (z1, z2) => { return(new System.Numerics.Complex(z1.Real * z2.Real + z1.Imaginary * z2.Imaginary, z1.Imaginary * z2.Real - z1.Real * z2.Imaginary)); }; for (int inch, outch = 0; outch < outchannels; outch++) { for (inch = 0; inch < inchannels; inch++) { System.Numerics.Complex sum = 0; for (int th = 0; th < batch; th++) { sum += mul_grad(gy[outch, th], x[inch, th]); } w[inch, outch] = sum; } } return(w); }
public void ExecuteTest() { float max_err = 0; foreach (int batch in new int[] { 1, 2, 3 }) { foreach (int inchannels in new int[] { 2, 4, 10, 20 }) { foreach (int outchannels in new int[] { 6, 14 }) { float[] xval = (new float[inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray(); float[] wval = (new float[inchannels * outchannels / 2]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray(); System.Numerics.Complex[] xcval = (new System.Numerics.Complex[xval.Length / 2]) .Select((_, idx) => new System.Numerics.Complex(xval[idx * 2], xval[idx * 2 + 1])).ToArray(); System.Numerics.Complex[] wcval = (new System.Numerics.Complex[wval.Length / 2]) .Select((_, idx) => new System.Numerics.Complex(wval[idx * 2], wval[idx * 2 + 1])).ToArray(); ComplexMap0D x = new ComplexMap0D(inchannels / 2, batch, xcval); ComplexFilter0D w = new ComplexFilter0D(inchannels / 2, outchannels / 2, wcval); ComplexMap0D y = Reference(x, w); OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map0D(inchannels, batch), xval); OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel0D(inchannels, outchannels / 2), wval); OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map0D(outchannels, batch)); ComplexDense ope = new ComplexDense(inchannels, outchannels, gradmode: false, batch); ope.Execute(x_tensor, w_tensor, y_tensor); float[] y_expect = y.ToArray(); float[] y_actual = y_tensor.State; CollectionAssert.AreEqual(xval, x_tensor.State); CollectionAssert.AreEqual(wval, w_tensor.State); AssertError.Tolerance(y_expect, y_actual, 1e-7f, 1e-5f, ref max_err, $"mismatch value {inchannels},{outchannels},{batch}"); Console.WriteLine($"pass: {inchannels},{outchannels},{batch}"); } } } Console.WriteLine($"maxerr:{max_err}"); }
public static ComplexMap0D Reference(ComplexMap0D y, ComplexFilter0D w) { int inchannels = w.InChannels, outchannels = w.OutChannels, batch = y.Batch; ComplexMap0D x = new ComplexMap0D(inchannels, batch); for (int th = 0; th < batch; th++) { for (int outch = 0; outch < outchannels; outch++) { System.Numerics.Complex v = y[outch, th]; for (int inch = 0; inch < inchannels; inch++) { x[inch, th] += v * w[inch, outch]; } } } return(x); }
public static ComplexMap0D Reference(ComplexMap0D x, ComplexFilter0D w) { int inchannels = x.Channels, outchannels = w.OutChannels, batch = x.Batch; ComplexMap0D y = new ComplexMap0D(outchannels, batch); for (int th = 0; th < batch; th++) { for (int outch = 0; outch < outchannels; outch++) { System.Numerics.Complex sum = y[outch, th]; for (int inch = 0; inch < inchannels; inch++) { sum += x[inch, th] * w[inch, outch]; } y[outch, th] = sum; } } return(y); }