示例#1
0
        public static void Triangle(int2[] points, Image <Rgba32> image, Rgba32 color)
        {
            // bounding box
            var(min, max) = MathUtils.BoundingBox(points);

            min.x = Math.Clamp(min.x, 0, image.Width);
            min.y = Math.Clamp(min.y, 0, image.Height);
            min.x = Math.Clamp(min.x, 0, image.Width);
            min.x = Math.Clamp(min.x, 0, image.Width);

            for (int x = min.x; x < max.x; x++)
            {
                for (int y = min.y; y < max.y; y++)
                {
                    var point = new int2(x, y);

                    float3 bcScreen = Barycentric(points, point);
                    if (bcScreen.x < 0 || bcScreen.y < 0 || bcScreen.z < 0)
                    {
                        continue;
                    }
                    image[x, y] = color;
                }
            }
        }
示例#2
0
        protected virtual bool LegacyRateLimit()
        {
            var accept       = false;
            var max          = Config["SvOldClientsPerInterval"].AsInt();
            var interval     = Config["SvOldClientsInterval"].AsInt();
            var useRateLimit = max > 0 && interval > 0;

            if (useRateLimit)
            {
                var now = Time.Get();

                if (LegacyRateLimitStart < 0 ||
                    LegacyRateLimitStart + interval * Time.Freq() <= now)
                {
                    LegacyRateLimitStart = now;
                    LegacyRateLimitNum   = Math.Clamp(LegacyRateLimitNum - max, 0, max);
                }

                accept = LegacyRateLimitNum < max;
            }

            if (Config["SvOldClientsSkip"] > 0 && (!accept || !useRateLimit))
            {
                accept = new Random().Next(0, int.MaxValue) <=
                         int.MaxValue / Config["SvOldClientsSkip"];
            }

            if (accept && useRateLimit)
            {
                LegacyRateLimitNum++;
            }

            return(!accept);
        }
示例#3
0
    public static Rectangle ToRectangle(this in RECT rect)
    {
        int left   = Math.Clamp(rect.left, int.MinValue / 2, int.MaxValue / 2);
        int top    = Math.Clamp(rect.top, int.MinValue / 2, int.MaxValue / 2);
        int right  = Math.Clamp(rect.right, int.MinValue / 2, int.MaxValue / 2);
        int bottom = Math.Clamp(rect.bottom, int.MinValue / 2, int.MaxValue / 2);

        int minX = Math.Min(left, right);
        int minY = Math.Min(top, bottom);
        int maxX = Math.Max(left, right);
        int maxY = Math.Max(top, bottom);

        return(new(minX, minY, maxX - minX, maxY - minY));
    }
示例#4
0
        public override bool Feed(ChunkConstruct packet, IPEndPoint endPoint)
        {
            if (Sequence >= PeerAck)
            {
                if (packet.Ack < PeerAck || packet.Ack > Sequence)
                {
                    return(false);
                }
            }
            else
            {
                if (packet.Ack < PeerAck && packet.Ack > Sequence)
                {
                    return(false);
                }
            }

            PeerAck = packet.Ack;

            if (packet.Token == TokenHelper.TokenNone || packet.Token != Token)
            {
                return(false);
            }

            if (packet.Flags.HasFlag(PacketFlags.Resend))
            {
                Resend();
            }

            if (packet.Flags.HasFlag(PacketFlags.Connless))
            {
                return(true);
            }

            var now = Time.Get();

            if (packet.Flags.HasFlag(PacketFlags.Control))
            {
                var msg = (ConnectionMessages)packet.Data[0];
                if (msg == ConnectionMessages.Close)
                {
                    State        = ConnectionState.Error;
                    RemoteClosed = true;

                    string reason = null;
                    if (packet.DataSize > 1)
                    {
                        reason = Encoding.UTF8.GetString(packet.Data, 1, Math.Clamp(packet.DataSize - 1, 1, 128));
                        reason = reason.SanitizeStrong();
                    }

                    Error = reason;
                    Debug.Log("connection", $"closed reason='{reason}'");
                }
                else if (msg == ConnectionMessages.Token)
                {
                    PeerToken = packet.ResponseToken;
                    if (State == ConnectionState.Token)
                    {
                        LastReceiveTime = now;
                        State           = ConnectionState.Connect;
                        SendConnectionMsgWithToken(ConnectionMessages.Connect);
                        Debug.Log("connection", $"got token, replying, token={PeerToken:X} mytoken={Token:X}");
                    }
                    else
                    {
                        Debug.Log("connection", $"got token, token={PeerToken:X}");
                    }
                }
                else
                {
                    if (State == ConnectionState.Offline)
                    {
                        if (msg == ConnectionMessages.Connect)
                        {
                            var token = Token;
                            Reset();
                            State           = ConnectionState.Pending;
                            EndPoint        = endPoint;
                            Token           = token;
                            PeerToken       = packet.ResponseToken;
                            LastSendTime    = now;
                            LastReceiveTime = now;
                            ConnectedAt     = now;
                            SendConnectionMsg(ConnectionMessages.ConnectAccept, null);
                            Debug.Log("connection", "got connection, sending connect+accept");
                        }
                    }
                    else if (State == ConnectionState.Connect)
                    {
                        if (msg == ConnectionMessages.ConnectAccept)
                        {
                            LastReceiveTime = now;
                            SendConnectionMsg(ConnectionMessages.Accept, null);
                            State = ConnectionState.Online;
                            Debug.Log("connection", "got connect+accept, sending accept. connection online");
                        }
                    }
                }
            }
            else if (State == ConnectionState.Pending)
            {
                LastReceiveTime = now;
                State           = ConnectionState.Online;
                Debug.Log("connection", "connecting online");
            }

            if (State == ConnectionState.Online)
            {
                LastReceiveTime = now;
                AckChunks(packet.Ack);
            }

            return(true);
        }
示例#5
0
        public bool SolveTOIPositionConstraints(int toiIndexA, int toiIndexB)
        {
            float minSeparation = 0.0f;

            for (int i = 0; i < _count; ++i)
            {
                ContactPositionConstraint pc = _positionConstraints[i];

                int     indexA       = pc.indexA;
                int     indexB       = pc.indexB;
                Vector2 localCenterA = pc.localCenterA;
                Vector2 localCenterB = pc.localCenterB;
                int     pointCount   = pc.pointCount;

                float mA = 0.0f;
                float iA = 0.0f;
                if (indexA == toiIndexA || indexA == toiIndexB)
                {
                    mA = pc.invMassA;
                    iA = pc.invIA;
                }

                float mB = 0.0f;
                float iB = 0.0f;
                if (indexB == toiIndexA || indexB == toiIndexB)
                {
                    mB = pc.invMassB;
                    iB = pc.invIB;
                }

                Vector2 cA = _positions[indexA].c;
                float   aA = _positions[indexA].a;

                Vector2 cB = _positions[indexB].c;
                float   aB = _positions[indexB].a;

                // Solve normal constraints
                for (int j = 0; j < pointCount; ++j)
                {
                    Transform xfA = new Transform();
                    Transform xfB = new Transform();
                    xfA.q = Matrex.CreateRotation(aA);                   // Actually about twice as fast to use our own function
                    xfB.q = Matrex.CreateRotation(aB);                   // Actually about twice as fast to use our own function
                    xfA.p = cA - Vector2.Transform(localCenterA, xfA.q); // Common.Math.Mul(xfA.q, localCenterA);
                    xfB.p = cB - Vector2.Transform(localCenterB, xfB.q); // Common.Math.Mul(xfB.q, localCenterB);

                    PositionSolverManifold psm = new PositionSolverManifold();
                    psm.Initialize(pc, xfA, xfB, j);
                    Vector2 normal = psm.normal;

                    Vector2 point      = psm.point;
                    float   separation = psm.separation;

                    Vector2 rA = point - cA;
                    Vector2 rB = point - cB;

                    // Track max constraint error.
                    minSeparation = MathF.Min(minSeparation, separation);

                    // Prevent large corrections and allow slop.
                    float C = Math.Clamp(Settings.TOIBaumgarte * (separation + Settings.LinearSlop),
                                         -Settings.MaxLinearCorrection, 0.0f);

                    // Compute the effective mass.
                    float rnA = Vectex.Cross(rA, normal);
                    float rnB = Vectex.Cross(rB, normal);
                    float K   = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    // Compute normal impulse
                    float impulse = K > 0.0f ? -C / K : 0.0f;

                    Vector2 P = impulse * normal;

                    cA -= mA * P;
                    aA -= iA * Vectex.Cross(rA, P);

                    cB += mB * P;
                    aB += iB * Vectex.Cross(rB, P);
                }

                _positions[indexA].c = cA;
                _positions[indexA].a = aA;

                _positions[indexB].c = cB;
                _positions[indexB].a = aB;
            }

            // We can't expect minSpeparation >= -b2_linearSlop because we don't
            // push the separation above -b2_linearSlop.
            return(minSeparation >= -1.5f * Settings.LinearSlop);
        }
示例#6
0
        public void SolveVelocityConstraints()
        {
            for (int i = 0; i < _count; ++i)
            {
                ContactVelocityConstraint vc = _velocityConstraints[i];

                int   indexA     = vc.indexA;
                int   indexB     = vc.indexB;
                float mA         = vc.invMassA;
                float iA         = vc.invIA;
                float mB         = vc.invMassB;
                float iB         = vc.invIB;
                int   pointCount = vc.pointCount;

                Vector2 vA = _velocities[indexA].v;
                float   wA = _velocities[indexA].w;
                Vector2 vB = _velocities[indexB].v;
                float   wB = _velocities[indexB].w;

                Vector2 normal   = vc.normal;
                Vector2 tangent  = Vectex.Cross(normal, 1.0f);
                float   friction = vc.friction;

                //Debug.Assert(pointCount == 1 || pointCount == 2);

                // Solve tangent constraints first because non-penetration is more important
                // than friction.
                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.points[j];

                    // Relative velocity at contact
                    Vector2 dv = vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA);

                    // Compute tangent force
                    float vt     = Vector2.Dot(dv, tangent) - vc.tangentSpeed;
                    float lambda = vcp.tangentMass * (-vt);

                    // b2Clamp the accumulated force
                    float maxFriction = friction * vcp.normalImpulse;
                    float newImpulse  = Math.Clamp(vcp.tangentImpulse + lambda, -maxFriction, maxFriction);
                    lambda             = newImpulse - vcp.tangentImpulse;
                    vcp.tangentImpulse = newImpulse;

                    // Apply contact impulse
                    Vector2 P = lambda * tangent;

                    vA -= mA * P;
                    wA -= iA * Vectex.Cross(vcp.rA, P);

                    vB += mB * P;
                    wB += iB * Vectex.Cross(vcp.rB, P);
                }

                // Solve normal constraints
                if (pointCount == 1 || Settings.BlockSolve == false)
                {
                    for (int j = 0; j < pointCount; ++j)
                    {
                        VelocityConstraintPoint vcp = vc.points[j];

                        // Relative velocity at contact
                        Vector2 dv = vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA);

                        // Compute normal impulse
                        float vn     = Vector2.Dot(dv, normal);
                        float lambda = -vcp.normalMass * (vn - vcp.velocityBias);

                        // b2Clamp the accumulated impulse
                        float newImpulse = MathF.Max(vcp.normalImpulse + lambda, 0.0f);
                        lambda            = newImpulse - vcp.normalImpulse;
                        vcp.normalImpulse = newImpulse;

                        // Apply contact impulse
                        Vector2 P = lambda * normal;
                        vA -= mA * P;
                        wA -= iA * Vectex.Cross(vcp.rA, P);

                        vB += mB * P;
                        wB += iB * Vectex.Cross(vcp.rB, P);
                    }
                }
                else
                {
                    // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
                    // Build the mini LCP for this contact patch
                    //
                    // vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
                    //
                    // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
                    // b = vn0 - velocityBias
                    //
                    // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
                    // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
                    // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
                    // solution that satisfies the problem is chosen.
                    //
                    // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
                    // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
                    //
                    // Substitute:
                    //
                    // x = a + d
                    //
                    // a := old total impulse
                    // x := new total impulse
                    // d := incremental impulse
                    //
                    // For the current iteration we extend the formula for the incremental impulse
                    // to compute the new total impulse:
                    //
                    // vn = A * d + b
                    //    = A * (x - a) + b
                    //    = A * x + b - A * a
                    //    = A * x + b'
                    // b' = b - A * a;

                    VelocityConstraintPoint cp1 = vc.points[0];
                    VelocityConstraintPoint cp2 = vc.points[1];

                    Vector2 a = new Vector2(cp1.normalImpulse, cp2.normalImpulse);
                    //Debug.Assert(a.X >= 0.0f && a.Y >= 0.0f);

                    // Relative velocity at contact
                    Vector2 dv1 = vB + Vectex.Cross(wB, cp1.rB) - vA - Vectex.Cross(wA, cp1.rA);
                    Vector2 dv2 = vB + Vectex.Cross(wB, cp2.rB) - vA - Vectex.Cross(wA, cp2.rA);

                    // Compute normal velocity
                    float vn1 = Vector2.Dot(dv1, normal);
                    float vn2 = Vector2.Dot(dv2, normal);

                    Vector2 b = new Vector2((float)(vn1 - cp1.velocityBias),
                                            (float)(vn2 - cp2.velocityBias));

                    // Compute b'
                    b -= Vector2.Transform(a, vc.K); // Common.Math.Mul(vc.K, a);

                    //const float k_errorTol = 1e-3f;
                    //B2_NOT_USED(k_errorTol);

                    for (; ;)
                    {
                        //
                        // Case 1: vn = 0
                        //
                        // 0 = A * x + b'
                        //
                        // Solve for x:
                        //
                        // x = - inv(A) * b'
                        //
                        Vector2 x = -Vector2.Transform(b, vc.normalMass); //Common.Math.Mul(vc.normalMass, b);

                        if (x.X >= 0.0f && x.Y >= 0.0f)
                        {
                            // Get the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2));

                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

                            break;
                        }

                        //
                        // Case 2: vn1 = 0 and x2 = 0
                        //
                        //   0 = a11 * x1 + a12 * 0 + b1'
                        // vn2 = a21 * x1 + a22 * 0 + b2'
                        //
                        x.X = -cp1.normalMass * b.X;
                        x.Y = 0.0f;
                        vn1 = 0.0f;
                        vn2 = vc.K.M22 * x.X + b.Y;
                        if (x.X >= 0.0f && vn2 >= 0.0f)
                        {
                            // Get the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2));

                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

                            break;
                        }


                        //
                        // Case 3: vn2 = 0 and x1 = 0
                        //
                        // vn1 = a11 * 0 + a12 * x2 + b1'
                        //   0 = a21 * 0 + a22 * x2 + b2'
                        //
                        x.X = 0.0f;
                        x.Y = -cp2.normalMass * b.Y;
                        vn1 = vc.K.M12 * x.Y + b.X;
                        vn2 = 0.0f;

                        if (x.Y >= 0.0f && vn1 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2));

                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

                            break;
                        }

                        //
                        // Case 4: x1 = 0 and x2 = 0
                        //
                        // vn1 = b1
                        // vn2 = b2;
                        x.X = 0.0f;
                        x.Y = 0.0f;
                        vn1 = b.X;
                        vn2 = b.Y;

                        if (vn1 >= 0.0f && vn2 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2));

                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

                            break;
                        }

                        // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
                        break;
                    }
                }

                _velocities[indexA].v = vA;
                _velocities[indexA].w = wA;
                _velocities[indexB].v = vB;
                _velocities[indexB].w = wB;
            }
        }
示例#7
0
        public override void Tick()
        {
            if (!Server.ClientInGame(ClientId))
            {
                return;
            }

            if (Server.GetClientInfo(ClientId, out var info))
            {
                Latency.Accumulate   += info.Latency;
                Latency.AccumulateMax = Math.Max(Latency.AccumulateMax, info.Latency);
                Latency.AccumulateMin = Math.Min(Latency.AccumulateMin, info.Latency);
            }

            if (Server.Tick % Server.TickSpeed == 0)
            {
                Latency.Average       = Latency.Accumulate / Server.TickSpeed;
                Latency.Max           = Latency.AccumulateMax;
                Latency.Min           = Latency.AccumulateMin;
                Latency.Accumulate    = 0;
                Latency.AccumulateMax = 0;
                Latency.AccumulateMin = 1000;
            }

            if (GameContext.World.IsPaused)
            {
                RespawnTick++;
                LastActionTick++;
                TeamChangeTick++;
                DieTick++;
            }
            else
            {
                if (Character == null && Team == Team.SPECTATORS && SpectatorId == -1)
                {
                    ViewPos -= new Vector2(
                        Math.Clamp(ViewPos.x - LatestActivity.TargetX, -500f, 500f),
                        Math.Clamp(ViewPos.y - LatestActivity.TargetY, -400f, 400f)
                        );
                }

                if (Character == null && DieTick + Server.TickSpeed * 3 <= Server.Tick)
                {
                    Spawning = true;
                }

                if (Character != null)
                {
                    if (Character.IsAlive)
                    {
                        ViewPos = Character.Position;
                    }
                    else
                    {
                        Character = null;
                    }
                }
                else if (Spawning && RespawnTick <= Server.Tick)
                {
                    TryRespawn();
                }
            }
        }
示例#8
0
        public override void SetMaxClientsPerIp(int max)
        {
            var config = ServerConfig;

            config.MaxClientsPerIp = Math.Clamp(max, 1, config.MaxClients);
        }
示例#9
0
 protected override NetworkServerConfig CheckConfig(NetworkServerConfig config)
 {
     config.MaxClientsPerIp = Math.Clamp(config.MaxClientsPerIp, 1, config.MaxClients);
     return(config);
 }
示例#10
0
        public override bool Feed(NetworkChunkConstruct packet, IPEndPoint remote)
        {
            if (packet.Flags.HasFlag(PacketFlags.RESEND))
            {
                Resend();
            }

            if (UseToken)
            {
                if (!packet.Flags.HasFlag(PacketFlags.TOKEN))
                {
                    if (!packet.Flags.HasFlag(PacketFlags.CONTROL) || packet.DataSize < 1)
                    {
                        Debug.Log("connection", "dropping msg without token");
                        return(false);
                    }

                    if (packet.Data[0] == (int)ConnectionMessages.CONNECTACCEPT)
                    {
                        if (!Config["ClAllowOldServers"])
                        {
                            Debug.Log("connection", "dropping connect+accept without token");
                            return(false);
                        }
                    }
                    else
                    {
                        Debug.Log("connection", "dropping ctrl msg without token");
                        return(false);
                    }
                }
                else
                {
                    if (packet.Token != Token)
                    {
                        Debug.Log("connection", $"dropping msg with invalid token, wanted={Token} got={packet.Token}");
                        return(false);
                    }
                }
            }

            if (Sequence >= PeerAck)
            {
                if (packet.Ack < PeerAck || packet.Ack > Sequence)
                {
                    return(false);
                }
            }
            else
            {
                if (packet.Ack < PeerAck && packet.Ack > Sequence)
                {
                    return(false);
                }
            }

            PeerAck = packet.Ack;
            if (packet.Flags.HasFlag(PacketFlags.RESEND))
            {
                Resend();
            }

            if (packet.Flags.HasFlag(PacketFlags.CONTROL))
            {
                var msg = (ConnectionMessages)packet.Data[0];
                if (msg == ConnectionMessages.CLOSE)
                {
                    if (!NetworkCore.CompareEndPoints(EndPoint, remote, true))
                    {
                        return(false);
                    }

                    State        = ConnectionState.ERROR;
                    RemoteClosed = true;

                    var reason = "";
                    if (packet.DataSize > 1)
                    {
                        reason = Encoding.UTF8.GetString(packet.Data, 1, Math.Clamp(packet.DataSize - 1, 1, 128));
                    }

                    Error = reason;
                    Debug.Log("connection", $"closed reason='{reason}'");
                    return(false);
                }
                else
                {
                    if (State == ConnectionState.CONNECT)
                    {
                        if (msg == ConnectionMessages.CONNECTACCEPT)
                        {
                            if (packet.Flags.HasFlag(PacketFlags.TOKEN))
                            {
                                if (packet.DataSize < 1 + 4)
                                {
                                    Debug.Log("connection", $"got short connect+accept, size={packet.DataSize}");
                                    return(true);
                                }

                                Token = packet.Data.ToUInt32(1);
                            }
                            else
                            {
                                UseToken = false;
                            }

                            LastReceiveTime = Time.Get();
                            State           = ConnectionState.ONLINE;
                            Debug.Log("connection", "got connect+accept, sending accept. connection online");
                        }
                    }
                }
            }

            if (State == ConnectionState.ONLINE)
            {
                LastReceiveTime = Time.Get();
                AckChunks(packet.Ack);
            }

            return(true);
        }
示例#11
0
文件: Double.cs 项目: trylek/runtime
 static double INumber <double> .Clamp(double value, double min, double max)
 => Math.Clamp(value, min, max);
示例#12
0
 static sbyte INumber <sbyte> .Clamp(sbyte value, sbyte min, sbyte max)
 => Math.Clamp(value, min, max);
示例#13
0
 static uint INumber <uint> .Clamp(uint value, uint min, uint max)
 => Math.Clamp(value, min, max);
示例#14
0
 /// <inheritdoc cref="INumber{TSelf}.Clamp(TSelf, TSelf, TSelf)" />
 public static uint Clamp(uint value, uint min, uint max) => Math.Clamp(value, min, max);
示例#15
0
 /// <inheritdoc cref="INumber{TSelf}.Clamp(TSelf, TSelf, TSelf)" />
 public static ulong Clamp(ulong value, ulong min, ulong max) => Math.Clamp(value, min, max);