/// <summary> /// Adds a scaled vector to another: <c>result = y + alpha*x</c>. /// </summary> /// <param name="y">The vector to update.</param> /// <param name="alpha">The value to scale <paramref name="x"/> by.</param> /// <param name="x">The vector to add to <paramref name="y"/>.</param> /// <param name="result">The result of the addition.</param> /// <remarks>This is similar to the AXPY BLAS routine.</remarks> public virtual void AddVectorToScaledVector(Complex[] y, Complex alpha, Complex[] x, Complex[] result) { if (y == null) { throw new ArgumentNullException("y"); } if (x == null) { throw new ArgumentNullException("x"); } if (y.Length != x.Length) { throw new ArgumentException(Resources.ArgumentVectorsSameLength); } if (y.Length != x.Length) { throw new ArgumentException(Resources.ArgumentVectorsSameLength); } if (alpha.IsZero()) { y.Copy(result); } else if (alpha.IsOne()) { CommonParallel.For(0, y.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { result[i] = y[i] + x[i]; } }); } else { CommonParallel.For(0, y.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { result[i] = y[i] + (alpha*x[i]); } }); } }
/// <summary> /// Scales an array. Can be used to scale a vector and a matrix. /// </summary> /// <param name="alpha">The scalar.</param> /// <param name="x">The values to scale.</param> /// <param name="result">This result of the scaling.</param> /// <remarks>This is similar to the SCAL BLAS routine.</remarks> public virtual void ScaleArray(Complex alpha, Complex[] x, Complex[] result) { if (x == null) { throw new ArgumentNullException("x"); } if (alpha.IsZero()) { Array.Clear(result, 0, result.Length); } else if (alpha.IsOne()) { x.Copy(result); } else { CommonParallel.For(0, x.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { result[i] = alpha*x[i]; } }); } }
/// <summary> /// Multiplies two matrices and updates another with the result. <c>c = alpha*op(a)*op(b) + beta*c</c> /// </summary> /// <param name="transposeA">How to transpose the <paramref name="a"/> matrix.</param> /// <param name="transposeB">How to transpose the <paramref name="b"/> matrix.</param> /// <param name="alpha">The value to scale <paramref name="a"/> matrix.</param> /// <param name="a">The a matrix.</param> /// <param name="rowsA">The number of rows in the <paramref name="a"/> matrix.</param> /// <param name="columnsA">The number of columns in the <paramref name="a"/> matrix.</param> /// <param name="b">The b matrix</param> /// <param name="rowsB">The number of rows in the <paramref name="b"/> matrix.</param> /// <param name="columnsB">The number of columns in the <paramref name="b"/> matrix.</param> /// <param name="beta">The value to scale the <paramref name="c"/> matrix.</param> /// <param name="c">The c matrix.</param> public virtual void MatrixMultiplyWithUpdate(Transpose transposeA, Transpose transposeB, Complex alpha, Complex[] a, int rowsA, int columnsA, Complex[] b, int rowsB, int columnsB, Complex beta, Complex[] c) { int m; // The number of rows of matrix op(A) and of the matrix C. int n; // The number of columns of matrix op(B) and of the matrix C. int k; // The number of columns of matrix op(A) and the rows of the matrix op(B). // First check some basic requirement on the parameters of the matrix multiplication. if (a == null) { throw new ArgumentNullException("a"); } if (b == null) { throw new ArgumentNullException("b"); } if ((int) transposeA > 111 && (int) transposeB > 111) { if (rowsA != columnsB) { throw new ArgumentOutOfRangeException(); } if (columnsA*rowsB != c.Length) { throw new ArgumentOutOfRangeException(); } m = columnsA; n = rowsB; k = rowsA; } else if ((int) transposeA > 111) { if (rowsA != rowsB) { throw new ArgumentOutOfRangeException(); } if (columnsA*columnsB != c.Length) { throw new ArgumentOutOfRangeException(); } m = columnsA; n = columnsB; k = rowsA; } else if ((int) transposeB > 111) { if (columnsA != columnsB) { throw new ArgumentOutOfRangeException(); } if (rowsA*rowsB != c.Length) { throw new ArgumentOutOfRangeException(); } m = rowsA; n = rowsB; k = columnsA; } else { if (columnsA != rowsB) { throw new ArgumentOutOfRangeException(); } if (rowsA*columnsB != c.Length) { throw new ArgumentOutOfRangeException(); } m = rowsA; n = columnsB; k = columnsA; } if (alpha.IsZero() && beta.IsZero()) { Array.Clear(c, 0, c.Length); return; } // Check whether we will be overwriting any of our inputs and make copies if necessary. // TODO - we can don't have to allocate a completely new matrix when x or y point to the same memory // as result, we can do it on a row wise basis. We should investigate this. Complex[] adata; if (ReferenceEquals(a, c)) { adata = (Complex[]) a.Clone(); } else { adata = a; } Complex[] bdata; if (ReferenceEquals(b, c)) { bdata = (Complex[]) b.Clone(); } else { bdata = b; } if (beta.IsZero()) { Array.Clear(c, 0, c.Length); } else if (!beta.IsOne()) { ScaleArray(beta, c, c); } if (alpha.IsZero()) { return; } CacheObliviousMatrixMultiply(transposeA, transposeB, alpha, adata, 0, 0, bdata, 0, 0, c, 0, 0, m, n, k, m, n, k, true); }
public static Complex Pow(Complex value, Complex power) { if (value.IsZero()) { if (power.IsZero()) { return Complex.One; } if (power.Real > 0.0) { return Complex.Zero; } if (power.Real < 0) { return power.Imaginary == 0.0 ? new Complex(double.PositiveInfinity, 0.0) : new Complex(double.PositiveInfinity, double.PositiveInfinity); } return double.NaN; } /*if(value.IsReal() && value < 0.0) { return Math.Pow(value, power); }*/ return Exp(power * Ln(value)); }